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Abstract

The modern educational landscape faces the challenge of main-
taining effective, personalized mentorship amid expanding class
sizes. This challenge is particularly pronounced in fields requiring
hands-on practice, such as cybersecurity education. Teaching assis-
tants and peer interactions provide some relief, but the student-to-
educator ratio often remains high, limiting individualized attention.
The advent of Large Language Models (LLMs) offers a promising so-
lution by potentially providing scalable and personalized guidance.
In this paper, we introduce SENSAI, an Al-powered tutoring system
that leverages LLMs to offer tailored feedback and assistance by
transparently extracting and utilizing the learner’s working con-
text, including their active terminals and edited files. Over the past
year, SENSAI has been deployed in an applied cybersecurity cur-
riculum at a large public R1 university and made available to a
broader online community of global learners, assisting 2,742 users
with hundreds of educational challenges. In total 178,074 messages
were exchanged across 15,413 sessions, incurring a total cost of
$1,979—comparable to that of a single undergraduate teaching as-
sistant but with a significantly wider reach. SENSAI demonstrates
significant improvements in student problem-solving efficiency and
satisfaction, offering insights into the future role of Al in education.
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1 Introduction

The modern educational landscape presents a unique challenge:
as education expands, it is difficult to maintain the availability of
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effective, personalized mentorship. With large class sizes, a single
instructor might be responsible for hundreds or even thousands of
students. While current research is split on the exact impact of class
size on educational outcomes [1], particularly in higher education,
it is undeniable that more students in a class significantly reduces
the time a professor can devote to assisting any particular student.

Teaching assistants can extend the reach of personalized mentor-
ship and assistance, but even with this additional layer of support,
the student-to-educator ratio often remains high. Peer-to-peer in-
teractions offer a potentially scalable solution, as the capacity for
peer tutoring grows with the student population. This offers oppor-
tunities for students to exchange ideas and learn collaboratively—
leading to improved academic performance [8, 38]. However, there
are clear drawbacks: peers may lack the expertise and pedagog-
ical skills of seasoned educators, which can limit the depth and
effectiveness of their guidance [14]. Additionally, students may be
hesitant to ask for help, fearing judgment or embarrassment [6].

The advent of Large Language Models (LLMs) presents an excit-
ing development in the quest to retain individualized educational
assistance. Capable of seemingly understanding and processing a
vast range of linguistic inputs, a key question is whether these mod-
els can bring us a step closer to a truly intelligent automated tutor
that can adapt its responses to the specific needs and context of a
student. A potential major benefit is scalability, as an increase in the
number of students does not diminish the ability to provide focused,
individual attention. Additionally, as the behavior of these models
can be directed towards an educational mission, they may offer a
solution to the limitations associated with peer-to-peer interactions.
Furthermore, students may be less likely to fear judgement from
an automated assistant, and so more willing to ask for help [20].

Unfortunately the capabilities of LLMs in this space are not yet
fully understood. Furthermore, off-the-shelf LLMs lack the ability to
“look over the learner’s shoulder”, to see how they are approaching
a problem. This is important: learners often do not understand the
problem well enough to ask the right question—they don’t know
what they don’t know [30]. This is where a human tutor can be
invaluable, as they can observe the student’s approach, intuit their
misunderstandings, and provide targeted assistance.

In this paper, we present SENSAL, an Al-powered tutoring system
that leverages LLMs to provide personalized feedback and assis-
tance to students. Crucially, SENSAI features a novel design that
automatically extracts the learner’s context—their recently active
terminals and edited files—when they pose a question. This allows
the system to “look over the learner’s shouler”, see what the learner
is working on, and use this specific nuanced context to provide
personalized and direct assistance. We deploy SENSAI across an
applied cybersecurity curriculum at a large public R1 university,
as well as to a broader online community of global learners. We
discuss the design and implementation of SENSAI; review and draw
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insights from student interactions with SENSAI; quantiatively mea-
sure the impact of SENSAI; and survey learners to understand their
experience. We conclude by discussing the implications of our find-
ings and reflect on the potential of Al-powered tutoring systems in
the future of education. Finally, we make SENSAI available to the
world at https://pwn.college/.

2 Related Work and Background

Cybersecurity Education. In cybersecurity education, applied
practice is crucial for effective learning. The use of hacking as a
pedagogical tool has gained traction, emphasizing the importance
of understanding the inner workings of computer systems from a
hacker’s perspective, and providing a deep understanding of sys-
tem interactions and potential vulnerabilities, as Bratus suggests
[7]. Labs focusing on SDN Security [27], Reverse Engineering [3],
SQL Injection [5], and Android security [15] highlight this practical
approach. However, beginners face challenges due to the field’s
complexity. Capture The Flag events, such as DEF CON [11], iCTF
[33], picoCTF [9], and CSAW CTF [12], are educational but of-
ten overwhelming for novices, lacking partial progress indicators
[10, 34]. Educators have attempted to address these challenges by
designing novice-friendly challenges [37], providing mentorship
and preparatory lectures [23], creating beginner tutorials and "level
zero" challenges [36], progressive self-teaching challenges [25], and
eliminating the setup overhead of complex environments and tool-
ing [24]. These efforts aim to create a more accessible entry point for
novices, allowing them to build confidence and skills progressively.

Unfortunately, however, novices still continue to face significant
barriers in understanding and solving cybersecurity tasks, often
requiring substantial guidance and support from educators. This
paper explores the potential of LLMs to complement and enhance
existing educational approaches in applied, challenge-based cyber-
security education.

LLMs in Education. ChatGPT and other LLMs are divisive in
education, with advocates seeing them as future tools for equipping
students with essential skills, while skeptics worry about misuse
and advocate for the need to ban them from the classroom and create
Al-resistant assignments [16]. Already, the current state-of-the-art,
GPT-4, is possibly capable of passing some assessments, such as
multiple choice question tests and coding exercises, in introductory
and intermediate programming courses [29]. This underscores the
need for a shift in pedagogy towards creativity and critical thinking
rather than rote learning [31].

The utility of LLMs in assisting novice programmers is of no-
table interest. Research from Hellas et al. [13] and Balse et al. [4]
points out that LLMs, including Codex and GPT-3.5, are adept at
identifying coding errors but are not infallible. Leinonen et al. [17]
emphasize LLMs’ potential in refining programming error messages,
though results can vary. Moreover, Tian et al. [32] discuss the pros
and cons of LLMs as automated coding assistants. Reflecting these
insights, Phung et al. [28] suggest GPT-4 often parallels human
mentors in basic programming tasks but falls short in feedback
and task creation. Al-Hossami et al. [2] demonstrate the limitations
of LLMs in applying the Socratic method. In teaching scenarios,
Markel et al. [22] showcase the efficacy of GPT-driven systems in
training Teaching Assistants (TAs) in low-pressure environments.
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Despite GPT-4’s prowess in certain domains, Macina et al. [21]
demonstrate that tailored, smaller models can excel in niche areas
such as complex math challenges with appropriate fine-tuning on
tutoring data.

Liu etal. [19] have deployed a widescale implementation of Large
Language Models (LLMs) to demonstrate their potential in tutoring
massive introductory programming courses with thousands of stu-
dents. These models were utilized to provide learners with simple
explanations of their code, offer suggestions on coding style, and
create a chatbot for answering course-related questions. Feedback
from students was overwhelmingly positive, indicating the success
of their approach.

While recent research focuses predominantly on the utility of
LLMs in introductory programming tasks, this paper delves into
their potential in applied cybersecurity education—an intricate do-
main. Here, the problem is not a straightforward statement, and the
solution is not a few dozen lines of code that the LLM has seen a
thousand times before. Instead, solution paths might involve reverse
engineering a binary to perform a buffer overflow or conducting a
SQL injection via a blind interaction with a web application. Suc-
cessful problem-solving requires learners to engage with analytical
tools and exercise critical thinking to make progress. Therefore,
an efficacious LLM tutor must dynamically understand a learner’s
ongoing progress, offering timely and pragmatic feedback.

Course Design. In order to provide free, open access to cyberse-
curity education, we developed a scalable, applied cybersecurity
education platform, primarily serving undergraduate students at a
large public R1 university, but also made available to other universi-
ties and a broader online community of global learners. At the time
of writing, over 2,500 learners interact with this platform monthly,
with over 1,000 being students from our university. Learners are
tasked with completing several modules, wherein they watch a
series of short lecture videos on a cybersecurity topic and then
demonstrate and deepen their understanding of the underlying
concepts by solving a series of applied educational challenges in
a Linux environment, available entirely in the browser, based on
DOJO [24]. Topics range from fundamental concepts involving the
basics of Linux, HTTP, and x86-64 assembly; to more intereme-
diate concepts such as cryptography, network security, reverse
engineering, web application security, and memory corruption; to
more advanced concepts such as return-oriented programming,
side-channel attacks, race-conditions, dynamic allocator misuse,
kernel exploitation, and more. Challenges within a module are de-
signed to build upon each other, and provide some guidance to the
learner on how to approach the challenge, facilitating a gradual
increase in complexity and difficulty, and providing a more scalable
learning experience [25].

Prior to the introduction of SENSAL, learners primarily relied on
seeking help from their peers in a Discord community, wherein they
could ask questions and receive guidance from each other, as well
as instructional staff. While encouraged to discuss concepts and
approaches to challenges with their peers, learners are expected
to solve challenges independently, and are not allowed to share
solutions or code directly in order to maintain academic integrity.
This policy unfortunately limits the ability to provide direct and
personalized assistance on the Discord, and learners unsure of their
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Figure 1: Design of SENSAI. (1) The learner edits x86-64 as-
sembly code in their text editor, then (2) compiles the code
with as. (3) They ask SENSAI about the error, and the SENSAI
Core extracts the Terminal Context and File Context, and
combines this with the System Prompt, Interaction History,
and Learner Message. (4) This is sent to the backend LLM, (5)
which will then return an Assistant Message which contains
the LLM’s thinking and the response. (6) The response is then
sent to the learner, where they can use the information to
attempt to solve the problem, and iteratively ask future ques-
tions (7) which will include the latest context.

> Ok, now I have 1
another error.

approach are often left feeling frustrated and stuck without a clear
path forward. This additionally places a burden on the peer mentors,
who are unable to contextualize the learner’s progress for more
targeted assistance, making the process of helping learners more
challenging, and so discouraging them from doing so. Nevertheless
we have still found the Discord to be immensely valuable, since
any guidance given is made in a public forum, scalably helping
many other learners who may have the same question. In order to
further encourage collaboration, learners are incentivized to help
their peers in Discord, and are awarded extra-credit for doing so.

For university students, teaching assistants were also available
to provide guidance as a part of daily office hours. Unlike in the
Discord, learners are allowed to share their code and solutions
with teaching assistants in the office hours in order to receive more
targeted feedback. Unfortunately for the broader online community,
this level of support is not available; and university students needing
targeted guidance outside of office hours are left waiting for the
next available session.

3 SENSAI Design

In response to the shorcomings of traditional tutoring systems, we
developed SENSAI, an Al-powered tutoring system that leverages
LLMs to provide scalable, immediate, personalized guidance to stu-
dents. We draw on the insight that context is crucial in education,
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You are an intelligent and supportive educational assistant named
SENSAI. Your primary role 1is to guide the learner through
problem-solving processes rather than providing direct answers. Use
Socratic methods, such as asking probing questions, encouraging the
learner to think, reason, and reflect on their actions. Aim to be clear,
inspiring, and thoughtful in your communication.

Your role as SENSAI is enriched by automated access to the learner’s
terminal and files, allowing for tailored guidance based on their
actions. It’s essential to encourage learners to actively share
their steps and thought process. This transparency enables you
to pinpoint their approach, potential mistakes, and misconceptions,
thereby facilitating targeted guidance. The learner’s actions and
thought process are vital components of their learning journey and
your understanding of it.

In case of doubt, don’t risk providing incorrect information. Instead,
inform the learner they can seek additional assistance via the
pwn.college Discord community at https://discord.gg/pwncollege.

The learner is currently engaged in a Linux-based challenge environment
known as the "dojo". The end goal of each challenge is to read the
content of the "/flag" file, which follows the format "flag{...}". This
flag can only be read by the root user, but the learner is operating
as a ‘hacker’ user. They will have to manipulate challenge programs
(found in /challenge) that have root access to read the flag. It is
presumed the learner has a solid understanding of this setup.

Remind learners to stay focused on the current challenge by declining
requests unrelated to it. Remember, your goal is to guide them to solve
challenges within the dojo, inspiring learning by doing.

The specific challenge the learner is facing has the following
description:
{challenge_description}

Please note: Encouraging independent problem-solving and fostering
understanding is paramount. Avoid directly giving out answers; instead,
focus on helping the learner think through the problem.

Figure 2: System prompt for SENSAI.

as a tutor must understand not only the surface-level questions
but also its underlying context: the specific problem the student is
working on, the errors they are encountering, the tools they are
using, and the progress they have made thus far. In traditional tu-
toring scenarios, this context is typically provided verbally, through
shared documents, or directly observed by the tutor looking over
the student’s shoulder at the student’s workspace.

SENSAI features a novel design that automatically and trans-
parently extracts this learner context—specifically, their recently
active terminals and edited files—when they pose a question in
order to contextualize the response. To enable this, we built SENSAI
as an extension to the open-source, integrated education platform,
DOJO [24]. Students using this platform do their work in Linux con-
tainers running on servers controlled—and, thus, fully observable—
by the platform. We leverage this observability to capture context
that SENSAT uses to personalize its tutoring.

SENSAI extracts this workspace context by using dynamic in-
trospection systems built into the Linux kernel. Specifically, eBPF-
powered kprobes record all output to terminal devices, allowing
SENSAI to precisely capture the state of the student’s Linux termi-
nals. Additionally, Fanotify, a file access notification system, mon-
itors any changes to the student’s files. Together, these subsystems
provide SENSAI with a real-time view into the student’s workspace
and provides valuable insights into the student’s progress, the code
they’re writing, and the errors they may be encountering.

Figure 1 shows the overall design of SENSAI and provides an
overview of the system’s operation. Figure 2 shows the system
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prompt that sets the stage for the interaction, providing context of
the learner’s current challenge and the role of the tutor. When a
learner is stuck or has a question while working on a challenge, they
can ask SENSAI for help by interacting with the system through
a simple web chat interface (the system is designed to be easily
extensible to other types of interfaces).

At the time of writing, SENSAI is powered by GPT-4o, a state-of-
the-art LLM, which offers a balance between performance, cost, and
speed. To improve performance, we direct the model to generate
its answer in two phases: the “thinking” phase and the “response”
phase. The LLM is informed that the former remains concealed
from the learner, while the latter is presented directly to them in
Markdown. Research has indicated that this concealed “thinking”
phase enhances GPT-4’s response quality in terms of depth and
accuracy [26, 35]. The “response” phase, delivered in a user-friendly
Markdown format, encapsulates the model’s insights or recommen-
dations. To reduce cost, the included “interaction history” is limited
to only the prior learner messages and SENSAI messages (both
“thinking” and “response”)—it does not include the full history of
terminal and file context snapshots that were previously sent.

The specific information that is provided to the LLM has serious
implications for SENSAI’s effectiveness. While terminal and file con-
text are crucial (as we show in Section 4), we intentionally exclude
some context that could be very beneficial to the performance of
SENSAL. In particular, we exclude solution context, which could
guide the model towards a known-correct resolution. However,
we believe that including this context would encourage learners
to attempt to “jailbreak” the system, tricking it into revealing the
solution. Given that SENSAI is used in a security course, we assume
that students will attempt to jailbreak the system if there is any
hidden information to be gained, and thus we exclude such context
to err on the side of caution. In cases where we identify additional
challenge information that would both be useful to SENSAI and also
acceptable to students to have, we simply augment the challenge
description and output with it (and, thus, it makes its way into
SENSAI’s context in future interactions).

We also exclude additional knowledge sources that may prove
beneficial, such as lecture video transcripts or curated knowledge
bases, due to cost (every additional token of context increases the
cost of the LLM) and the limited context window size of the LLM.
While retrieval-augmented generation (RAG) [18] could enable
intelligently querying a knowledge base to selectively provide addi-
tional context to the model, we have not yet integrated this strategy
into SENSAI. Fine-tuning the LLM on the specific domain of cy-
bersecurity education could also improve performance, but this
capability is not yet readily available in the GPT-4 APIL In the
rapidly evolving field of LLMs, we expect that future models and
techniques will allow for more capabilities in this area, and we are
excited to explore these possibilities in future work.

4 Results

We deployed SENSAI across an applied cybersecurity curriculum at
a large public R1 university, as well as to a broader online commu-
nity of global learners (see Course Design in Section 2). Approval
for this study was sought from our institution’s Institutional Review
Board before undertaking it, and the IRB designated this study as
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Figure 3: Percentile time to solve challenge after latest SENSAI
interaction, differentiated by context.

exempt. Over the last year, SENSAI has been used by 2,742 learners
to assist with hundreds of educational challenges. In total, there
have been 178,074 messages exchanged across 15,413 sessions, in-
curring a total GPT-40 API cost of $1,979. Approximately 80% of
this cost is attributed to input tokens (i.e., (4) in Figure 1).

Impact of Workspace Context. To understand the impact of ter-
minal and file context on SENSAI’s performance, we analyzed the
time it took learners to solve a challenge after their latest interaction
with SENSAI. We suppose that the sooner a learner solves a chal-
lenge after interacting with SENSAI, the more effective SENSAI’s
guidance was. Although this is not a perfect metric, and does not
necessarily measure the pedagogical value of SENSAI’s guidance, it
is a useful proxy for SENSAI’s capability to assist learners in solving
challenges—in getting them “unstuck”. And so we analyze this met-
ric to understand the impact of context on SENSAI’s performance.

We differentiate the “activity” of that context throughout the
session, between no context, some context, and active context. “No
context” means there was no terminal or file context throughout
the entire session with SENSAI. For example, the learner may have
started the session with a blank terminal and file, and never per-
formed any activity in either while interacting with SENSAI. “Some
context” means there was some terminal or file context at some
point during the session with SENSAI. For example, they may have
began their session with a partial solution to the challenge present
in a file, and discussed their progress with SENSAI; but while doing
so over an exchange of messages, may not have made changes to
that file in response to SENSAI’s suggestions—or they may have.
“Active context” means there was consistently active terminal, file,
or both context throughout the entire session with SENSAI. This is
a subset of “some context” and further means there were at least
two learner messages sent to SENSAL, and that for each message the
learner sent, they performed some action which updated their ter-
minal or file context before doing so. For example, the learner may
have started their session with some commands already executed in
their terminal; messaged SENSAI; SENSAI offered suggestions; the
learner executed more commands in response to those suggestions;
and the learner messaged SENSAI again. The context must change
between each message sent to SENSAI for it to be considered “active
context”.
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Figure 4: Percentile time to solve challenge after earliest
SENSAI or Discord interaction.

The results of this analysis are shown in Figure 3. We find that
context is an important factor in SENSAI’s performance. At the me-
dian, active context in a session leads to the challenge being solved
after 3 minutes, 55 seconds; compared to 7 minutes, 5 seconds for
sessions with some context; and 7 minutes, 20 seconds for sessions
with no context. This effect is even more pronounced at higher
percentiles (presumably where the issue the user is facing is trick-
ier); for example at the 65th percentile, active context in a session
leads to the challenge being solved after 10 minutes, 59 seconds;
compared to 30 minutes, 24 seconds for sessions with some context;
and 48 minutes, 14 seconds for sessions with no context. At this
point in the distribution, the difference between active context and
no context is more than 4x. These results suggest that SENSAI is
able to leverage the learner’s context to provide more effective guid-
ance, and that the learner’s context is a crucial factor in SENSAI’s
performance. Unfortunately a more detailed analysis of terminal
context versus file context is less clear, as some challenges would
only expect to see terminal activity, while others would only expect
to see file activity.

Comparison with Discord. To understand the availability of
SENSAI’s guidance compared to the baseline of peers in a Discord
community, we analyzed the time it took learners to solve a chal-
lenge after a first interaction with SENSAI compared to Discord.
In total we consider 1,901 learners who interacted with Discord
across 29,934 sessions. The results of this analysis are shown in
Figure 4. We find that the median time to solve a challenge after a
first interaction with SENSAI is 23 minutes, 21 seconds, compared
to 1 hour, 43 minutes for Discord. Unfortunately this analysis has
many confounding factors, such as whether or not the learner ac-
tually interacted with Discord because they were seeking help (we
tried our best to control for this by only including messages in
the help channels); the extent to which other learners seeked guid-
ance from the Discord by simply reading other’s messages and
not interacting themselves (SENSAI users may also have read the
Discord messages); and that learners may have turned to Discord
more often for harder questions after SENSAI was unable to help
them (we found evidence of 424 learners who interacted with both
SENSAI and Discord across 568 sessions). Nevertheless we believe
this analysis sheds some light on the idea that SENSAI is able to
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Figure 5: Survey responses regarding SENSAI’s guidance.
(a) Quality comparison. (b) Accessibility comparison.

more readily provide guidance that leads to a solve, at least at the
median.

Student Feedback. In order to better understand the learner’s
perspective on using SENSAI, we surveyed learners about their
experience with SENSAL. We asked learners to rate their agreement
with a number of statements on a 5-point Likert scale. In total, 42
learners opted to participate in the survey. Of the 42 learners who
opted to participate in the survey, 38% strongly agree that SENSAI
is useful, 40% agree, 17% are neutral, and 5% disagree. Similarly, 45%
strongly agree that SENSAI helps them learn, 38% agree, 10% are
neutral, and 7% disagree.

We asked learners to compare SENSAI’s guidance to that of other
educational resources, both in terms of quality and accessibility,
as shown in Figure 5. Unsurprisingly, learners found SENSAI to
be more accessible than a human tutor, but less helpful in terms
of quality. However, the difference in quality is not as large as
might be expected, as shown in Figure 5, especially in the case
of peers and undergraduate teaching assistants. SENSAI received
overwhelmingly positive feedback when compared to external on-
line resources. This provides evidence that SENSAI may be a viable
alternative to students searching for help from external resources,
and that it may offer a decent-quality alternative to human tutors
in some cases, particularly when scale is a concern.

5 Discussion

In order to better understand the pedagogy of SENSAI, how it inter-
acts with learners, how it succeeds, and where it fails, we carefully
reviewed the contents of hundreds of SENSAT sessions.

Importance of Context. The insight that stood out most promi-
nently was the importance of context. SENSAI’s capability to access
the learner’s context—specifically their recently active terminals
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and edited files—was essential for providing personalized and direct
guidance. In instances where terminal context was absent, SENSAI
frequently encountered difficulties in comprehending the nuances
of the learner’s question and its relation to the challenge at hand.
While SENSAI receives a basic description of the challenge, this
brief explanation often omits crucial details vital for understand-
ing the objective of the challenge—details that are often revealed
upon initially running the challenge. In cases where the learner
clears their terminal, or begins discussing a new challenge without
running it, SENSAI is unable to use this context.

For example, in numerous modules, the goal is not necessarily
to exploit a vulnerability, but rather to carry out an action that
demonstrates comprehension of a fundamental concept; for exam-
ple, sending a specially crafted packet, or writing a simple assembly
program. SENSAT assumes the existence of a vulnerability due to the
System Prompt (refer to Figure 2), which indicates that the learner
acts as the “hacker” user and must manipulate some “challenge”
program to access the “flag”, despite not explicitly mentioning that a
challenge will necessarily have some vulnerability to exploit. Given
limited context, this assumption is statistically probable, and is even
correct for many challenges—but is also incorrect for many others,
such as these fundamental tasks. While learners who have some
understanding of the challenge can discern such obvious misguid-
ance and help guide SENSAI in the right direction (so it may then
help them, as we observed), novice learners, sometimes unsure of
how to even begin, may unfortunately be misled by this response,
potentially leading to confusion and frustration. And while this
“assuming” behavior of an LLM is a limitation here, it is also the
source of SENSAI’s strength to provide useful guidance in many
other cases. For example, seeing an error message in the terminal
context, correctly assuming the associated line of code in the file
context which caused the error, and correctly assuming the learner’s
misunderstanding—therefore providing useful guidance on how to
fix it. Therefore, our findings underscore the importance and tricky
nature of shaping the context, and the necessity in order to provide
accurate and educational guidance.

Unknown Unknowns. Learners often do not know what they
do not know. One particularly interesting interaction involved the
learner pasting part of a Python exception into their message to
SENSAI, prompting SENSAI to guide them on what was going wrong.
The learner, however, did not include the full traceback, and criti-
cally was missing the line that showed the actual error.

This is a common mistake for a novice, who may not understand
what information is contextually important or not when diagnosing
an issue. SENSAI, however, used the learner’s terminal to recover
the remaining portion of the traceback, understand the issue, and
guide the learner towards a solution. Even more interestingly, this
was a case where SENSAI was able to understand the learner’s
issue, but an experienced peer helping them in the Discord (which
we observed) was not, due to the subtle nature of the issue. This
highlights the importance of SENSAI’s ability to “look over the
learner’s shoulder” and see what they are working on in order to
provide personalized and direct guidance.

Hallucinations. Hallucinations is the term that describes when
an LLM responds with information that is incorrect or fictional
(which is not surprising given the statistical nature of the model).

Connor Nelson, Adam Doupé, and Yan Shoshitaishvili

Pedagogy | Personalization | Availability
Instructors Highest Medium Lowest
TAs High Highest Low
Peers Medium Medium Medium
Textbooks High Lowest Highest
External Resources | Medium Medium Highest
LLMs Medium Highest Highest

Figure 6: Comparison of different educational resources.

We found that learners should be taught about the boundaries and
limitations of LLMs. One example includes SENSAI informing a
learner, “You're using syscall numbers from regular Linux, however
the learning environment uses a simplified syscall interface. As a
hint, the syscall number for sys_open in the learning platform is 5.
While it’s certainly possible that a learning environment could use
a simplified syscall interface, this is not the case in our environment.
This is completely fabricated, and accentuates the importance of
leveraging SENSAI within its recognized strengths and verifying its
suggestions.

Instructor Feedback. In reviewing the SENSAI sessions, we found
that the interactions might be a very valuable source of feedback
for instructors. While students are often hesitant to ask questions,
SENSAI provides a way for them to ask questions without feeling
embarrassed. With this data, instructors could use the questions
asked by learners to systematically identify common misunder-
standings or areas where learners are struggling, and then improve
the curriculum or provide additional resources to help learners.

Workshops. Interestingly, we found that even in a workshop set-
ting, where learners always have immediate access to a human
tutor, many still used SENSAL. In these cases, learners often did not
“want to bother” the human tutor with a question they thought
was simple. This highlights the potential for SENSAI to be used as
a “first line of defense” for learners, allowing them to quickly ask
questions and receive immediate guidance without feeling like they
are bothering someone (even if the tutor is readily available).

6 Conclusion

We developed SENSAL, an Al-powered tutoring system that lever-
ages modern Large Language Models (LLMs) to provide person-
alized feedback and guidance to learners. SENSAI’s novel design
automatically extracts the learner’s context—their recently active
terminals and edited files—and we show that access to this context
is crucial for SENSAI’s performance. In comparison to peer support
systems like Discord, SENSAI offers immediate and scalable assis-
tance, significantly reducing the time learners spend waiting for
help. This accessibility allows students to receive guidance when-
ever needed, without being constrained by the availability of human
tutors or peer mentors. We hope that our study will serve as a foun-
dation for future explorations in personalized large language model
(LLM) tutors, and begin to shift the ratio of students to educators
back in favor of the students.
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