
Ahoy SAILR! There is No Need to DREAM of C:
A Compiler-Aware Structuring Algorithm for Binary Decompilation

Zion Leonahenahe Basque, Ati Priya Bajaj, Wil Gibbs, Jude O’Kain, Derron Miao,
Tiffany Bao, Adam Doupé, Yan Shoshitaishvili, Ruoyu Wang

Arizona State University
{zbasque,atipriya,wfgibbs,judeo,derronm,tbao,doupe,yans,fishw}@asu.edu

Abstract

Contrary to prevailing wisdom, we argue that the measure
of binary decompiler success is not to eliminate all gotos or
reduce the complexity of the decompiled code but to get as
close as possible to the original source code. Many gotos
exist in the original source code (the Linux kernel version 6.1
contains 3,754) and, therefore, should be preserved during
decompilation, and only spurious gotos should be removed.

Fundamentally, decompilers insert spurious gotos in de-
compilation because structuring algorithms fail to recover
C-style structures from binary code. Through a quantita-
tive study, we find that the root cause of spurious gotos is
compiler-induced optimizations that occur at all optimization
levels (17% in non-optimized compilation). Therefore, we
believe that to achieve high-quality decompilation, decom-
pilers must be compiler-aware to mirror (and remove) the
goto-inducing optimizations.

In this paper, we present a novel structuring algorithm
called SAILR that mirrors the compilation pipeline of GCC
and precisely inverts goto-inducing transformations. We
build an open-source decompiler on angr (the ANGR DE-
COMPILER) and implement SAILR as well as otherwise-
unavailable prior work (Phoenix, DREAM, and rev.ng’s
Combing) and evaluate them, using a new metric of how
close the decompiled code structure is to the original source
code, showing that SAILR markedly improves on prior work.
In addition, we find that SAILR performs well on binaries
compiled with non-GCC compilers, which suggests that com-
pilers similarly implement goto-inducing transformations.

1 Introduction

Compiled programs called binaries power the devices that
drive modern society. However, many of these binaries are
shipped without accompanying source code, making their
analysis arduous. To reduce this burden, decompilation tech-
niques aim to recover source code from binary code. Security
analysts use decompilation in reverse engineering [11, 31],

malware analysis [19, 20, 33, 43], and vulnerability discovery
and mitigation [32, 36].

Many applications of decompilation require high-quality
decompiled source code. One important criterion of high-
quality source code is meaningful control flow structures, such
as if-else statements, while loops, and do-while loops in
the C language. Unfortunately, the semantics of these control
flow structures are lost during compilation, replaced by simple
binary-level control flow transfers such as jmp instructions.

Decompilers leverage control flow structuring algorithms
that analyze low-level constructs in the compiled binary and
attempt to recover the high-level control flow. If compilers
simply translated C code to assembly and pieced the assembly
together with jmp instructions, the resulting code would be
easily structurable, and decompilers would be able to produce
high-quality decompiled source code. However, modern com-
pilers optimize and distort code structures during compilation,
making the result unstructurable and preventing current struc-
turing algorithms from recovering the high-level control flow
structure.

Structuring failures manifest as goto statements in the
decompilation, stitching together portions of code where
the decompiler failed to recover reasonable high-level struc-
tures [44]. The fact that it is specifically a goto that results
from such failures has caused some semantic confusion be-
tween the Software Engineering and Decompilation research
communities. In Software Engineering, gotos are considered
harmful, with Dijkstra famously stating that “the quality of
programmers is a decreasing function of the density of goto
statements in the programs they produce” [18]. Treating de-
compilers as software engineers, and thus treating gotos as in-
dicators of low-quality output, recent research into structuring
algorithms has focused on extensively restructuring decom-
piled code to reduce or eliminate goto statements [9, 24, 44].

However, gotos do exist in popular C codebases, such as the
Linux kernel, which, as of version 6.1, contains 3,754 gotos.
Intuitively, previous work that removes all gotos will decrease
the quality of decompiled code when it removes intended,
developer-written gotos that are in the original source code, as

their elimination induces differences between the source code
and the decompilation. Clearly, such gotos, in the context of
faithful decompilation, are not harmful.

In fact, the lack of decompiler consideration for intended
gotos is a symptom of a more general weakness in decompi-
lation approaches. Existing techniques tackle the structure of
binary code without a principled understanding of how this
structure came to be. Our intuition is that an understanding
of the differences between intended and spurious gotos in
decompiled code will shed light on the binary constructs that
hamper code structuring during decompilation.

This paper is the first work to investigate and identify the
actual causes of spurious gotos. We systematically studied
why spurious gotos appear in decompiled code, tracking them
down to wide arrays of optimizations leveraged by the com-
piler. We investigated all compiler optimizations at level O2
and below in GCC 9.51 on Coreutils and identified all op-
timizations that may introduce unstructurable code. To our
surprise, some of these optimizations (responsible for around
17% of spurious gotos) are even enabled in non-optimized
(O0) mode and cannot be easily disabled.

This investigation led us to a realization: To preserve the
intended structure, including source-present gotos, and elimi-
nate sources of gotos introduced by the compilation process,
decompilers can leverage structuring algorithms informed
by compiler-derived knowledge. Based on our findings, we
created the first compiler-aware control flow structuring al-
gorithm, SAILR2, that uses compiler-derived knowledge to
deoptimize binary code and make unstructurable code struc-
turable. SAILR mirrors the compilation pipeline of GCC and
precisely inverts goto-introducing transformations rather than
using broad (and imprecise) goto-eliminating modifications
leveraged by prior work.

SAILR generates decompilation that, compared to state-
of-the-art techniques, contains significantly fewer spurious
gotos while maintaining high structure similarity to the source
code. For example, among other evaluations, we evaluated de-
compilers against 7,355 functions (containing 1,367 intended
gotos) from 26 popular C Debian packages. The state-of-the-
art Hex-Rays decompiler included in IDA Pro [3] emitted
6,115 gotos while achieving an average Graph Edit Distance
(GED) of 22.52 between the decompilation and the source
code. SAILR reduced the gotos count to 2,673 (we discuss
the remaining gotos in Section 9) while maintaining an av-
erage GED of 22.64. DREAM, a state-of-the-art structuring
technique that guarantees the elimination of all (including
intended) gotos, emitted 0 gotos and significantly impacted
the quality of the decompilation, achieving an average GED
of 45.99. An optimal decompiler should have both the same
number of gotos as the source and a GED score of zero.

Furthermore, while comparing SAILR against existing re-
search, we realized that existing structuring techniques are

1We also analyzed LLVM and identified analogous optimizations.
2SAILR: Structured AIL Reverter.

either not open-sourced or have bit-rotted, hampering research
in the field. To enable impartial comparative studies, we built
a new decompiler for angr, which we refer to as the ANGR
DECOMPILER hereinafter, and implemented SAILR as well
as other previous structuring algorithms (namely, Phoenix [9],
DREAM [44], and rev.ng’s Combing [24]) in it. Due to its
Python implementation, our decompiler can be significantly
slower than other decompilers, however, we expect perfor-
mance to improve as it is further developed. We hope the
ANGR DECOMPILER will foster future decompilation research,
improve the reproducibility of decompilation techniques, and
make future work in this area easier to approach.

Contributions. This paper makes the following contributions:
• We identify the root causes of unstructurable code dur-

ing the decompilation of C: compiler optimizations and
knowledge gaps between the decompiler and the com-
piler.

• We design SAILR, a novel compiler-aware structur-
ing algorithm that precisely inverts the root causes of
goto-introducing compiler transformations to generate
decompilation significantly closer to the original code.

• We build an open-source decompiler ANGR DECOM-
PILER, and then implement SAILR as well as three
other structuring algorithms on our decompiler for an
impartial evaluation.

• We design a new set of evaluation metrics to measure the
quality of control flow structuring during decompilation
by measuring how close it is to high-quality source code.
Using our metrics, we evaluate SAILR and demonstrate
its improved structuring performance over other struc-
turing algorithms and state-of-the-art decompilers.

In the spirit of open science, we are actively developing the
ANGR DECOMPILER and SAILR as open-source projects3.
We have also open-sourced our evaluation framework, which
includes the specific versions of angr and SAILR used in
our evaluation4.

2 Background & Motivation

Before diving into the technical details of SAILR, we in-
troduce necessary background knowledge about compiling
C programs (Section 2.1), decompiling C programs (Sec-
tion 2.2), state-of-the-art control flow structuring algorithms
(Section 2.3), and the motivation of our research (Section 2.4).

2.1 Modern C Compilation
Modern C compilation has two high-level phases relevant

to the understanding of the decompilation process. First, the
source code is “lifted” into an Intermediate Language (IL) as
C is too high level to be operated on directly. In the case of
GCC, C code is “lifted” into an IL called Gimple [2].

3https://github.com/angr/angr
4https://github.com/mahaloz/sailr-eval

https://github.com/angr/angr
https://github.com/mahaloz/sailr-eval

Once lifted, optimizations are applied to the IL. Optimiza-
tions that are specific to a program’s control flow use schemas
to identify optimization locations. Schemas are similar to
puzzle pieces for a program’s control flow. Once a schema is
found to fit a certain control flow archetype, such as a while
loop, the corresponding operation can be performed on the IL
to manipulate it into an optimized form.

2.2 Modern Binary Decompilation
Modern binary decompilers generally perform three phases

of analysis before generating C-style code.

Control flow graph recovery. A decompiler first disassem-
bles machine code in a binary to recover assembly instruc-
tions, function boundaries, and execution flows. Control flow
information is stored in a control flow graph (CFG), with ba-
sic blocks as vertices and execution flow as edges. Optionally,
the decompiler may lift instructions into an IL to assist with
architecture- and platform-agnostic analysis.
Type inference. After recovering a CFG, the decompiler uses
parts of the graph to infer variable locations and their associ-
ated types. Prior research has explored various methodologies
for inferring types, such as TIE [30], Howard [39], and re-
typd [34]. More recently, Osprey [46] and DIRTY [12] utilize
machine learning techniques to predict types. Optionally,
this inference phase may also recover prototypes and calling
conventions for all functions.
Control flow structuring. In this last phase, the decompiler
will transform assembly instructions or IL statements into
C-style statements using patterns and flow information from
the CFG. This phase will also simplify these statements
and identify common compiler idioms to replace them with
more human-friendly representations. In general, a CFG can
be structured in many different, but semantically equivalent,
forms, making choosing the right structure a difficult task.

2.3 Structuring in C Decompilation
Table 1 shows a taxonomy of existing control-flow structur-

ing algorithms. We broadly categorize structuring algorithms
into two groups:

Graph-schema-matching algorithms. These structuring al-
gorithms attempt to match subgraphs of a CFG against known
control-flow patterns for C control-flow structures. For ex-
ample, a diamond-shaped subgraph commonly corresponds
to an if-else construct when the two middle nodes have
inverted edge conditions. Being condition-aware is critical to
the correctness of these structuring algorithms [9].

A key challenge that these algorithms face is unknown
graph schemas. Structuring algorithm authors usually hard-
code graph schemas for common C control-flow constructs.
However, because compiler optimizations create novel graph
schemas, there are more graph schemas in real-world bina-
ries than one can reasonably enumerate. As a result, these
algorithms must virtualize edges (i.e., eliminating edges and

Table 1: A taxonomy of control flow structuring algorithms in
modern decompilers and decompilation literature. “Duplica-
tion Removal” refers to removing compiler-introduced code
duplication. An optimal compiler will remove duplicates and
have no redundant code/conditions. We observed that in rare
cases Hex-Rays will remove exactly duplicate blocks.

Decompiler Co
nd

iti
on

Aw
ar

e
Em

it
G

ot
os

D
up

lic
at

io
n

Re
m

ov
al

O
pe

n-
so

ur
ce

Re
du

nd
an

t C
on

di
tio

ns
Re

du
nd

an
t C

od
e

Hex-Rays [3] Yes Yes Rare No No No
Ghidra [35] Yes Yes No Yes No No

mirtoc (extended) [21] No Yes No No No No
Phoenix [9] Yes Yes No No No No

DREAM [44] Yes No No Yes Yes No
rev.ng [24] Yes No No No Yes Yes

SAILR Yes Yes Yes Yes No No

1 int schedule_job(int needs_next, int fast_job, int mode)
2 {
3 if (needs_next && fast_job) {
4 complete_job();
5 if (mode == EARLY_EXIT)
6 goto cleanup;
7

8 next_job();
9 }

10

11 refresh_jobs();
12 if (fast_job)
13 fast_unlock();
14

15 cleanup:
16 complete_job();
17 log_workers();
18 return job_status(fast_job);
19 }

Listing 1: A motivating example based on code from the
Linux kernel job scheduler.

replacing them with spurious gotos) to create more subgraphs
that would match against known graph schemas, which sig-
nificantly hampers the quality of decompiled code.

Goto-less algorithms. These structuring algorithms (used by
DREAM and rev.ng) do not use edge virtualization to con-
vert non-schema-matching subgraphs into schema-matching
ones. Instead, they create new control-flow structures that are
functionally equivalent to non-schema-matching subgraphs.
These new structures often do not match the source’s be-
cause they can introduce new or duplicated code. DREAM
duplicates code found in conditions while moving around
contained logic. rev.ng duplicates code found in incomplete
structures to make them match known schemas. These algo-
rithms rely heavily on block condition information to make
goto-less structures.

1 long long schedule_job(unsigned int a0,
unsigned int a1, unsigned int a2)↪→

2 {
3 if (a0 && a1)
4 {
5 complete_job();
6 if (EARLY_EXIT != a2)
7 {
8 next_job();
9 refresh_jobs();

10 }
11 }
12

13 if (!a0 || !a1)
14 refresh_jobs();
15 if (a1 && (!a0 || EARLY_EXIT != a2))
16 fast_unlock();
17

18 complete_job();
19 log_workers();
20 return job_status(a1);
21 }

1 long long schedule_job(unsigned int a0,
unsigned int a1, unsigned int a2)↪→

2 {
3 if (a0 && a1)
4 {
5 complete_job();
6 if (EARLY_EXIT == a2)
7 goto LABEL_4012eb;
8 next_job();
9 refresh_jobs();

10 goto LABEL_4012d3;
11 }
12 refresh_jobs();
13 if (!a1)
14 goto LABEL_4012eb;
15 LABEL_4012d3:
16 fast_unlock();
17 LABEL_4012eb:
18 complete_job();
19 log_workers();
20 return job_status(a1);
21 }

1 long long schedule_job(unsigned int a0,
unsigned int a1, unsigned int a2)↪→

2 {
3 if (a0 && a1)
4 {
5 complete_job();
6 if (EARLY_EXIT == a2)
7 goto LABEL_4012eb;
8 next_job();
9 }

10 refresh_jobs();
11

12

13 if (a1)
14 fast_unlock();
15

16

17 LABEL_4012eb:
18 complete_job();
19 log_workers();
20 return job_status(a1);
21 }

Figure 1: (From left to right) the DREAM, Phoenix, and SAILR decompilation of Listing 1 (using GCC 9.5 -O2).

2.4 Motivation

At first glance, goto-less algorithms may appear superior
to graph-schema-matching algorithms since they never gen-
erate spurious gotos. However, between the two structuring
algorithms, goto-less approaches often differ more from the
source’s control flow structure. We assume that C source
code in a popular and actively maintained codebase (such as
code in GNU packages) is a high-quality implementation of
program logic. Therefore, when decompiling binaries that are
compiled from high-quality code, decompilation that is struc-
turally close to the source is of high quality. Using source
code structure as the ground truth, we manually evaluated
modern structuring approaches and found their results to be
significantly flawed.

Listing 1 shows a motivating example based on code found
in the Linux kernel scheduler. Figure 1 shows the DREAM,
Phoenix, and SAILR decompilation, respectively, for the com-
piled binary from Listing 1. While there are no spurious go-
tos in the DREAM decompilation, the if statements contain
complex and irreducible conditions that make understanding
execution flows difficult. DREAM decompilation contains du-
plicated conditions that did not exist in the source on Lines 13
and 15. Although this duplication decreases code complexity
compared to Phoenix, it obfuscates the original programmer’s
intentions. It also makes the needed conditions at each line of
code, like Line 16, harder to understand.

In the Phoenix decompilation, although it contains a goto
found in the source code, it also contains two spurious go-
tos. The gotos targeting LABEL_4012eb are due to a lack of
special-case if-statement schema in Phoenix. The goto target-
ing LABEL_4012d3 is due to a lack of compiler-optimization
knowledge. The compiler introduced extra code and created
a path to skip an extra conditional instruction using the Jump
Threading optimization (see Section 3.3). This optimization

introduces an extra call to refresh_jobs in both the Phoenix
and DREAM decompilation.

All the decompilers that we tested failed to remove the du-
plicated statements in this example. Additionally, any schema-
based structuring algorithms, like those used in Ghidra and
Hex-Rays, cannot remove the goto targeting LABEL_4012d3.
This is because no schema exists to structure this goto edge.
To generate high-quality decompiled code, we must develop
a new structuring algorithm that can undo the compiler’s
transformations, remove the duplicated blocks, and generate
high-quality decompilation that is close to the original source.
The last code snippet in Figure 1 shows the decompilation
result of such a new structuring algorithm.

3 Goto-Inducing Compiler Transformations

Without considering goto statements in source code, each
C construct can be represented by a single-entry, single-
exit (SESE) graph whose nodes are basic blocks in the con-
struct [21]. Compilers rely on a finite number of graph
schemas during the code generation phase (Section 2.1). If
we split the binary CFG of a function into nested SESE
graph regions, a graph-schema-matching structuring algo-
rithm matches each graph region against a known schema as
long as it knows all graph schemas that a compiler uses. This
works for binaries built without any compiler optimizations.

Unfortunately, some compiler optimizations split, merge,
or duplicate nodes on graphs without preserving graph
schemas. These optimizations create new graph schemas and
make it impossible for a structuring algorithm to exhaustively
enumerate all possible graph schemas that an optimization
compiler may generate. We find that there are three reasons
for edge virtualization to happen during structuring:

• (Real) gotos that exist in the source code. An optimal
structuring algorithm will want to preserve these gotos.

O2 A B C D E F G

1,000

2,000

3,000 3,002

2,121

1,790 1,765

1,046

708 629 602

Disabled Optimizations

G
ot

os

O0

O1

O2

O
pt

im
iz

at
io

n
Se

t

Figure 2: Gotos present in Hex-Rays decompilation as opti-
mizations in Section 3.3 are disabled. Each optimization point
disables itself and all optimizations to its left. Optimization
sets O2 through O0 are shown for reference.

• Graph schemas that compilers use during code genera-
tion (without optimizations) but are not known to struc-
turing algorithms. Because there are a finite number of
these schemas, an optimal structuring algorithm should
know all of them.

• New graph schemas that compiler optimizations create.
An optimal structuring algorithm should remove all re-
sulting gotos by reverting these optimizations.

We pick Coreutils 9.1 as the high-quality C codebase and
GCC 9.5 as the compiler for our studies.

3.1 Enumerating Missing Graph Schemas
While one could read all of the source code of a compiler

to find all unsupported graph schemas in a decompiler, this
approach does not scale. We propose the following methodol-
ogy to identify schemas missing in a decompiler.

First, we collect a set of binaries from high-quality code-
bases and compile them using GCC with optimizations (O2)
while enabling the save-temps and dump-tree-all flags.
These flags ask the compiler to save intermediate files that
are generated during preprocessing and optimization passes.
Next, we decompile all functions in all binaries and identify
functions with gotos in the decompilation but not the source.
For each function, we manually note the locations of the gotos
in the function and perform a binary search on the interme-
diate files to identify which optimization pass changed the
function to induce the goto. This identifies the GCC source for
the optimization pass, and these passes are well-commented
with information on the schema used.

3.2 Measuring Goto Introduction
Once we identify an optimization pass that causes an un-

structurable subgraph, we attempt to understand the impact
scale (i.e., how many gotos this optimization induces for bina-
ries in Coreutils). We disable the optimization and repeat the
steps in Section 3.1 until the goto disappears from the final

decompilation. If the goto disappears, we count all the go-
tos in the decompilation before and after the optimization to
measure its impact. We group all the disabled optimizations
that are required to make the goto disappear as either one
optimization algorithm or a set of tightly coupled algorithms.

This method worked surprisingly well for most optimiza-
tions in the GCC O2 optimization set. It is worth mentioning
that some optimizations did not disappear after disabling their
frontend optimization option; These optimizations could only
be entirely disabled by undocumented developer options.

3.3 Goto-Inducing Transformations in GCC
In an analysis of 1,150 unique functions across 135 ob-

ject files in Coreutils 9.1, we found the cause of every goto
across the 3,002 gotos that are present in the decompilation
of Hex-Rays 8.0. We compiled these object files with GCC
9.5 with optimization level O2, inlining disabled (for function
tracking), debug symbols enabled, and intermediate file dump-
ing. We filtered these functions for uniqueness by eliminating
functions that shared the same name, with the exception of
common symbols such as main and usage.

We associate every goto to a specific GCC transformation
using the methodology in Section 3.2. These transforma-
tions include togglable optimizations, internal highly-coupled
optimizations, and compiler knowledge exploitation.
Jump Threading (A). When one branch’s conditions super-
set a future branch’s conditions, the statements contained
between the two may be duplicated into the first and end with
a jump to avoid extra conditional instructions. Gotos appear
between duplicated statements.
Common Subexpression Elimination (B). The compiler
finds common statements among multiple blocks and reduces
them into one use of the expression and a series of jumps to
that expression. Gotos occur between condensed statements.
Switch Conversion (C). The compiler replaces simple assign-
ments on switch statements in cases with assignments from
scalars. Gotos can occur between cases that share a common
expression for assignment.
Cross Jumping (D). Unifies equivalent code (e.g., repeated
statements) across regions and replaces duplicates with a jump
to the unification. A goto corresponds to the new jump.
Software Thread Cache Reordering (E). The compiler esti-
mates the likelihood of executing a set of paths and clusters
those frequently executed together through code duplication.
Loop Header Optimizations (F). The compiler moves
branches that are always true or true only once to avoid exe-
cuting a conditional instruction many times. The edge leaving
the loop body (for the copied header) becomes a goto.
Builtin Inlining (G). The compiler replaces special built-in
functions, e.g., strcmp, with optimized inlining and prop-
agation. Gotos can occur when inlining happens inside a
short-circuit Boolean expression.
Switch Lowering (H). A highly-coupled optimization that
is non-disablable in GCC. The compiler optimizes switch

statements by breaking them into clusters and applying heuris-
tics to avoid large jump tables. Gotos occur when the switch
statement is fully transformed into a nested if statement.
Nonreturning Functions (I). Some functions, such as exit
and abort, may not (always) return, and GCC uses this knowl-
edge to transform the CFG. When the decompiler lacks
knowledge of these functions’ ability to not return, it can
cause successors to be incorrectly added during CFG recov-
ery, causing goto edges to those successors.
Figure 2 shows the number of gotos present in decompilation
after disabling transformations in compounding order. In
addition to associating the cause of every goto, we group the
goto-inducing optimizations into two classes by effect. Both
classes broadly transform irreducible statements, which we
define as statements found in the source code that cannot
be eliminated. Such statements must always exist for the
same path they were found in the source, though the literal
instructions that cause them may be condensed.
Irreducible Statement Duplication (ISD) converts a state-
ment into many statements that are semantically equivalent
to the original. This set includes optimizations A, E, and F.
Irreducible Statement Condensing (ISC) converts many
statements into a condensed version with introduced graph
edges. This set includes optimizations B, C, and D.

Optimizations G, H, and I do not fit well into either ISD or
ISC optimizations and instead are classified as miscellaneous
optimizations. These miscellaneous optimizations account for
a minority of goto-inducing optimizations and require more
specific algorithms to revert.

4 Overview of SAILR

We implemented our structuring algorithm, SAILR, and
our decompiler, ANGR DECOMPILER, on top of the angr bi-
nary analysis platform [38]. As such, our decompiler supports
any architecture angr supports. The ANGR DECOMPILER han-
dles miscellaneous decompiler tasks such as program lifting
while SAILR structures lifted Control Flow Graphs (CFG).

4.1 The Decompilation Pipeline
The ANGR DECOMPILER is similar in design to prior

work [9, 44]. Using angr, we convert a binary into a lifted
CFG. The lifted CFG contains VEX Intermediate Represen-
tation (IR) instructions, which is the IR angr uses. Figure 3
illustrates the high-level steps in the ANGR DECOMPILER
after a VEX IR CFG is provided.

4.1.1 Lifting, Simplification, and Variable Recovery

The ANGR DECOMPILER takes a function-level VEX IR
CFG as input. Because VEX IR cannot represent C-style ex-
pressions, we designed a more abstractable intermediate lan-
guage called the ANGR INTERMEDIATE LANGUAGE (AIL).
The ANGR DECOMPILER starts by lifting the VEX IR CFG
into an AIL CFG. Multiple rounds of simplifications are run

C Psuedocode Emission
int foo(int a) {

 return a ? a : -1;

}

Lifting

Simplification

Variable
Recovery

CFG
Deoptimizations

Schema
Matching

Region
Simplification

Region
Identification

Updated
CFG

Fixed-point

SAILR Structuring

Figure 3: Overview of ANGR DECOMPILER’s decompilation
pipeline.

on the AIL CFG to eliminate redundancy. This lifting process
is similar to GCC’s simplification process while lifting C to
Gimple. After lifting, the ANGR DECOMPILER recovers vari-
able locations, function prototypes, and variable types using
the AIL CFG.

4.1.2 SAILR Control Flow Structuring

After collecting an AIL CFG and variable information, the
ANGR DECOMPILER uses the SAILR structuring algorithm
to turn the AIL CFG into C pseudocode. The following
four passes are run until a fixed point is reached. These
passes together make up the core of the SAILR structuring
algorithm.

Region identification. The region identification algorithm
in the ANGR DECOMPILER is based on the algorithm that
DREAM employs [44]. First, it identifies all single-entry,
single-exit (SESE) regions in an AIL graph, following a
reverse topological order of all nodes. As its name suggests,
a SESE region refers to a group of AIL blocks and edges
that contain one entry and one exit. A region may contain
multiple regions.
Schema matching. The ANGR DECOMPILER then preliminar-
ily structures each region using a graph-schema-matching
algorithm built using concepts developed in Phoenix [9].
A major difference between SAILR and Phoenix is that
Phoenix directly matches schemas against subgraphs on the
full graph while SAILR matches schemas on a per-region ba-
sis. SAILR matches subgraphs in each region against known
graph schemas.

When SAILR fails to match a region against any known
graph schemas, it will virtualize an edge by removing it from
the region and replacing the source jump statement with a
goto. Then, SAILR condenses blocks that match a known
graph schema into a C-style construct. Once the ANGR DE-
COMPILER finishes structuring a region, it replaces the region
in its parent region with the structured node before continuing

to structure its parent region. Structuring terminates once the
outermost region is structured.
Region simplification. Next, the ANGR DECOMPILER per-
forms simplification and optimization on the AIL graph of
each refined region to eliminate redundant edges and blocks
that may not affect the control flow. This is also applied to
the preliminarily schema-matched result.
Deoptimization. In the last step of SAILR structuring, the
ANGR DECOMPILER performs deoptimizations directly on the
AIL graph. The deoptimization phase relies on all knowledge
previously collected in the pipeline, such as region informa-
tion, goto locations, and reaching conditions. Each deopti-
mization described in Section 5 is run iteratively or until a
limit is met.

4.1.3 C Pseudocode Emission

Finally, the ANGR DECOMPILER expands the structured
regions into a C-style abstract syntax tree (AST) and pretty-
prints it as a function with linear C-style statements. One
novel aspect in the decompilation pipeline is that we stall
optimizations on the lifted function CFG until the last point
of the process. This allows CFG edits, which are the basis for
SAILR, to have the most available knowledge.

4.2 Major Contributions of SAILR
Previous works in control flow structuring have fo-

cused on making decompilation more structured [9, 24,
44]. The Phoenix [9] decompiler identified this unstruc-
turability through gotos. Phoenix focused on reducing
these gotos through condition-aware graph schema match-
ing. DREAM [44] eliminated gotos by duplicating conditions
across the code to create bounded statements. rev.ng [24]
also eliminated gotos through duplication, but instead dupli-
cated executable code, not conditions on nodes. In the case of
DREAM and rev.ng, these approaches generically eliminate
all gotos regardless of their existence in the source.

In contrast, SAILR does not blindly eliminate gotos and
instead treats the cause: compiler transformations. SAILR
precisely reverts compiler transformations found to be the
cause of unstructurable code, which manifest as gotos in
decompilation. Of these transformations, certain compiler
optimizations and the gap between the decompiler and the
compiler play a significant role in unstructurability. SAILR
approaches a solution to both of these problems by improv-
ing the knowledge of the decompiler and reverting certain
optimizations.

Reverting compiler optimizations. SAILR’s deoptimization
passes revert the most impactful optimizations to control flow
structure. At a high level, SAILR directly edits the AIL
graph by condensing (Section 5.1), duplicating (Section 5.2),
or moving (Section 5.3) nodes. In each case, SAILR uses
information derived from GCC 9.5 to perform the reverse
actions of these optimizations. For each deoptimization pass

described in Section 5, the majority of computation time
comes from searching for valid cases. This search phase is
goto-guided. We assume all optimizations that SAILR wants
to deoptimize are goto-inducing, so we only search the blocks
around a goto edge when finding candidates. Although the
understanding of these optimization techniques is based on
GCC, we find that other compilers, such as Clang, implement
the same optimizations in similar ways.

Closing the compiler-to-decompiler knowledge gap. We
identified two critical knowledge gaps by studying the Hex-
Rays decompilation of Coreutils O2 binaries compiled by
GCC 9.5. The first gap is the returning of a callee, i.e.,
whether a callee function returns or not. A compiler will
not generate any return site for a call if it knows the callee
never returns, for example, _exit(). The function CFG that
any decompiler recovers will be different from the compiler’s
CFG if they are not aware of this fact, which may lead to
unstructurable code. This problem is further complicated be-
cause the returning can be call-site specific: A callee function
may be returning in one call site and non-returning in a differ-
ent site, which we will detail in Section 6.1. The second gap
is the decompiler’s unawareness of all the graph schema the
compiler uses. We discuss major ones in Section 6.2.

5 Deoptimizing Decompilation

In this section, we give an overview of novel algorithms
to deoptimize decompilation. These algorithms revert three
types of optimizations discussed in Section 3.3: ISD, ISC, and
miscellaneous optimizations. In each deoptimization, there is
a search and transformation phase that parallel the compiler’s
optimization process. The search phase is generally more
computationally intensive.

5.1 ISD Optimizations
The main effect of ISD optimizations is the duplication of

subgraphs found in the original source CFG. Most compilers
will limit the number of statements that can be duplicated
when performing optimizations in this class. During GCC’s
ISD optimization passes, reaching conditions are computed
for each statement in the CFG. Reaching conditions determine
what statements are accessible when a condition holds during
execution. For each optimization, GCC further determines
if a statement is duplicatable using other indicators. In the
case of Jump Threading, the indicator is whether an ancestor
statement shares an overlapping condition that guarantees the
execution of the current statement. For optimizations such as
Software Thread Cache Reordering, the duplication indicator
can be as complicated as computing if a block has a higher
execution probability over its neighbors.

Next, the compiler will duplicate both the marked state-
ment and the graph found under that reaching condition. The
duplication will be placed at another location in the graph that
guarantees the same reaching conditions, guarded by either

void foo(int a, int b) {
if (a && b) {

puts("first print");
}

puts("second print");
if (b) {

puts("third print");
}

sleep(1);
puts("leaving foo...");

}

void foo(int a, int b) {
if (a && b) {

puts("first print");
puts("second print");
goto label_1;

}
puts("second print");
if (b) {

label_1:
puts("third print");

}
sleep(1);
puts("leaving foo...");

}

Figure 4: Example C code shown before and after transforma-
tion from Jump Threading, an ISD optimization. The second
condition of the original code is always true if the first con-
dition is true, causing the comparison to be subverted by a
jump.

already present blocks or new conditional blocks. The dupli-
cated subgraph may have other statements appended to the
graph tail nodes. Finally, the duplicated subgraph tail nodes
are connected to the original subgraph successors by an edge.

Figure 4 shows a C program that when compiled with GCC
O2 optimizations results in optimized output. The compiler
computes the conditions for both the first print and the third
print. Because the conditions overlap, the compiler deter-
mines that both scopes will execute if the first condition (a
&& b) holds true. The compiler then duplicates the code
between the two conditions and creates a jump (a goto) from
the first condition scope to the second condition scope. We
next discuss how SAILR condenses ISD-duplicated blocks.
Finding duplicate statements. Given an AIL function CFG,
SAILR starts by iterating through all combinations of two
statements and creates an initial set of candidate statement
pairs that exist in the same region and are storage equiva-
lent. Two statements are storage equivalent when all their
reads and writes to locations are the same. For a pair of call
statements, storage equivalence means all arguments share
the same storage locations and the function addresses are the
same.

With the candidate set, we take all candidates and expand
their similarity match by expanding the connected graph of
the matching statements. We assume the first found statement
of the pair is the head of each similar subgraph. Then we
iteratively expand each subgraph using a Breadth-First Search
(BFS) traversal and match the statements using the Knuth-
Morris-Pratt (KMP) algorithm [28].

Finally, with each candidate expanded to its maximum
graph similarity, we find the tail nodes of each duplicate graph.
All of these nodes must share the same successor in each
graph. At least one of the two graphs must have a goto edge,
which was identified during structuring, that connects it to the
common successor. In Figure 5 (left) the graph of a matching
case is shown. Note, that any number of nodes can exist
between the condition head and the duplicated node.

... ...

... ...

a ¬a

goto

... ...

... ...

a ¬a

¬aa

Figure 5: CFGs before and after deoptimizing an ISD opti-
mization case. In order to identify an ISD case, the shaded
node must be found to have a semantic duplicate, as well as
post-dominating goto edge. The nodes are merged and then
bounded by their previous conditions.

Condensing duplicates. The key to condensing a pair of
candidate subgraphs while preserving the original semantics
is maintaining the reaching conditions of every node in the
graph after condensing. In Figure 5 (right), a graph shows the
correct result of reverting an ISD case.

First, the duplicated node must be merged into one node
by redirecting all predecessors to the newly merged node.
Although shown as a single node in this example, the merged
node can be a graph, which means the predecessors may
go to multiple nodes. Next, the condition a must be used
to correct the flow of execution before and after leaving the
merged node. If there are multiple head nodes in the merged
sub-graph, each head node must have the correct a condition
blocking its path. In the case of a single node being the head of
a merged graph, only the exits of the merged sub-graph need
duplicated conditions. Finally, the graph is in the deoptimized
state and should no longer have a goto. Depending on the
conditions before and after the ISD case, we can simplify the
exiting conditions on the merged sub-graph. Listing 3 in the
Appendix shows the pseudocode of our ISD deoptimization
algorithm.

5.2 ISC Optimizations
The main effect of ISC optimizations is the reduction of

subgraphs found in the original source CFG through condens-
ing. Condensing turns n equivalent statements into n−m
statements, where m ≥ 1. Similar to ISD optimizations, ISC
optimizations require knowledge of reaching conditions and
statement semantics. ISC optimizations traverse the CFG for
semantically equivalent pairs of statements (or subgraphs).
Then, for each statement pair, ISC optimizations will elimi-
nate one statement and connect the other with a jump to the
remaining statement.

Figure 7 shows an example C program that exhibits gotos
when optimized with Cross Jumping, an ISC optimization.
The return statement is reused across many if-statements,

...

...

...

goto

...

...

......

Figure 6: CFGs before and after deoptimizing an ISC opti-
mization case. ISC cases contain a goto edge connecting one
node to another node that has multiple predecessors. Duplica-
tion of the shaded node, and all its single-successor ancestors,
revert this case.

int foo(int a, int b) {
if(!a)
return -1;

puts("first print");
if(!b) {
return -1;

}

puts("leaving foo...");

return 1;
}

int foo(int a, int b) {
if(!a)
goto label_1;

puts("first print");
if(!b) {

label_1:
ret = -1;
goto label_2;

}
puts("leaving foo...");
ret = 1;

label_2:
return ret;

}

Figure 7: Example C code shown before and after transfor-
mation from Cross Jumping, an ISC optimization. In the
original code, the return statement, as well as its return value,
are reused in the same execution pass resulting in statements
being merged and connected with a goto.

which is a common programming pattern. In the resulting
code output, all but one return is replaced with a goto. For
the first if, Cross Jumping also eliminates the constant as-
signment to ret. We next discuss how SAILR duplicates
ISC-condensed blocks to recover the original structure.
Finding condensed statements. Finding condensed state-
ments requires finding the locations of goto edges (after struc-
turing) in an AIL CFG. Similar to searching for ISD cases,
this demands that a decompiler can iteratively perform graph
optimizations and structuring. We can only know the loca-
tions of gotos in an AIL function CFG after structuring at
least once. Figure 6 (left) shows a matched case of an ISC
optimization.

Our algorithm considers any statement connected to an-
other statement through a goto as an ISC deopimization can-
didate. ISC deoptimizations are a wide-catching net for gotos
and may not always eliminate gotos. To avoid re-duplicating
blocks that other passes condensed, this deoptimization must
be run after all other goto-aware deoptimizations. As a spe-
cial case, gotos to function-exit blocks, such as a return, are
special-cased to reduce duplication. An arbitrary code dupli-

cation limit is set on jumps to these types of blocks to mimic
the compiler. This allows the goto cleanup programming
style to still exist in SAILR decompilation.
Reverting condensed statements. After locating all goto
edges in the AIL graph, the destination nodes act as the head
nodes for duplication. To revert an ISC optimization, the
chain of single-successor nodes is copied beginning from the
head node. Figure 6 (right) shows the effect of the duplication
on an ISC case. For a node chain that ends in an exit node, or
a node that leaves the current function, it is guaranteed to re-
move a goto. Listing 4 in the Appendix shows the pseudocode
of our ISD deoptimization algorithm.

A common case we observe is that many functions have two
exit nodes after a comparison of the stack canary. Therefore,
we identify all the exit regions, or clusters of nodes, that end
in an exit that has one entry. For stack canary comparison,
there are three nodes in the cluster: the if statement, the return
node, and the stack-check-fail node. This allows us to copy
the entire region as the exit node.

In cases where the final node in the node chain is not an exit
node, this deoptimization may not remove the goto. Instead,
this deoptimization transforms the graph into a form that is
easier to case match for other deoptimizations that run on the
graph. This is important because during compilation, ISC
optimizations are often stacked on top of other goto-inducing
optimizations, similar to the ISD optimizations. SAILR must
iteratively revert these optimizations one after another.

5.3 Miscellaneous Optimizations
Optimizations not deoptimized by ISD or ISC reverters

require specific identification. Of the known miscellaneous
optimization, only Switch Lowering may be identified using
gotos.
Reverting switch lowering. To the best of our knowledge,
depending on the density of switch case numbers, GCC may
generate three forms of binary control-flow structures for
switches: binary decision trees, jump tables, and bit-tests [4].
When fallthroughs between cases are in use, switches that
are lowered into decision trees are usually unstructurable
as cascading if-else constructs. To make such subgraphs
structurable, we must transform them into normal switches.
In SAILR, we implement a solution based on pattern and
condition matching to revert lowered switches. Among all
decompilers that we tested, only Hex-Rays has very limited
support for reverting lowered switches. In Figure 8 a case of
cascading if-else constructs is shown as well as its trans-
formation into a switch node. A goto present in the cluster
is optional but is a high-confidence indicator of a lowered
switch.
Reverting switch clustering. Another common cause of
switch-related unstructurable subgraphs is switch cluster-
ing [4], where a switch is broken into multiple disjoint sub-
switches (with different case numbers). Each sub-switch is
transformed into its own binary representation (of the three

...
a = c1

goto a = c2

...

a = c1 a = c2

Figure 8: CFGs before and after Switch Lowering reversion.
All nodes in a candidate switch region must hold a Boolean
condition of a = c, where c is a constant. These condition
nodes must cascade and either be post-dominated by a single
node or exit early. A goto appearing in the region makes the
case more likely to be a real Switch Lowering case.

forms). SAILR identifies and merges these sub-switches that
are grouped together by conditions within the same region.

6 Narrowing Knowledge Gaps

When the decompiler and the compiler diverge in their
views of the same binary, it may cause otherwise structurable
code to be incorrectly regarded as unstructurable by the de-
compiler. Therefore, we must close or narrow the knowledge
gaps between the decompiler and the original compiler to
ensure they have the same view of all structuring-dependent
artifacts. Our intuition is that decompilers must be compiler-
aware to achieve high-quality decompilation. In this section,
we summarize two significant sources of knowledge disparity
that we identified (described in Section 3.3) on GCC-9.5-
compiled Coreutils binaries: The returning of functions and
missing graph schemas in decompilers.

6.1 Non-returning Functions

GCC does not generate edges or successors for function
calls (e.g., exit()) that do not return. A decompiler that is
not aware of these semantics may incorrectly add a spurious
edge from the return site (that does not actually exist) to
whatever block that follows the call. Unfortunately, fixing
this problem requires more than just providing decompilers
with a list of non-returning functions, because a function may
be returning in some call sites and non-returning in other call
sites.

The error function from glibc is an example: It returns
when the first argument (status) is 0, and does not return in
other cases. With the error.h header file, GCC determines
that any call sites for error do not return if the first argument
has a non-0 constant. To solve these, we augmented the ANGR
DECOMPILER so that it determines the returning of error
call by examining the value of its first argument at all its call
sites.

6.2 Additional Graph Schemas
Schema-matching algorithms, as described in Section 2.3

match subgraphs against known graph schemas that corre-
spond to C structures. By using the methodology outlined in
Section 3.1, we identified three major missing graph schemas
in most decompilers that we tested and added support for
them in SAILR.

Short-circuited compound Boolean conditions. During
the lifting of C to Gimple, GCC transforms compound
Boolean conditions into control-flow constructs using spe-
cialized graph schemas to express the short-circuit condition.
Both Hex-Rays and Ghidra support such graph schemas, but
Phoenix does not and always generates gotos. Moreover,
DREAM will generate a semantically equivalent graph where
each node is guarded by much more complex conditions than
what are in the source. We investigated and concluded that
the root cause is DREAM’s reliance on condition expression
simplification. Simplification (or minimization) of Boolean
expressions is an NP-hard problem, so it is too computation-
ally expensive for DREAM to derive Boolean expressions
that are as simple as in the source for non-trivial cases (e.g.,
Boolean expressions with more than six atoms).
Comma-separated multi-statement expressions. A not-that-
uncommon usage in C is comma-separated multi-statement
expressions, where the statements will be executed first be-
fore evaluating the expression at the end. Not supporting
this expression type will prevent proper structuring of loops
that use such expressions as loop conditions. Out of all de-
compilers that we test, only Hex-Rays supports such types of
expressions. We add support for these expressions in SAILR.
Common condition while-loop exits. In some cases of
structuring, the Phoenix algorithm can generate extra gotos
that leave cyclic regions structured as while-loops. In a
while-loop, if the loop contains a branch where both suc-
cessors are inverted conditions of each other, like c and !c,
this can be replaced by an if statement and a break out of the
loop.

7 Measuring the Quality of Structuring

Measuring the structuring quality of decompilation is differ-
ent from measuring its overall quality. Changes that improve
readability, e.g., constant propagation or variable elimination,
do not always impact the structure of the code. Previous
work focused on evaluating the quality of structuring by re-
lating it to structural complexity. They mainly used three
metrics: Number of gotos (Gotos) [9, 24, 44], McCabe Cyclo-
matic Code Complexity (MCC) [24], and the Lines of Code
(LoC) [44]. However, these metrics are flawed for evaluating
structuring quality even when shown relatively similar source.

To understand these flaws, we evaluate previous metrics on
our motivating example in Listing 1, with the decompilation
results by Phoenix, DREAM, and SAILR shown in Figure 1

Table 2: Previous work’s structuring metrics, GED, and
CFGED measured on Figure 1 and Listing 1.

Gotos LoC MCC GED CFGED

Source 1 19 4 0 0
SAILR 1 15 4 0 0
Phoenix 3 19 4 2 2
DREAM 0 16 9 21 38

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12
10.9

5.0

1.0
2.0

Submissions

A
ve

ra
ge

G
E

D

Figure 9: In the Decomperson study, a human participant’s
goal is to perfectly recover the source from only the assembly
code of a binary. As human participants submit closer byte-
matched decompilation, their average GED scores decrease.

(and measurements produced in Table 2). SAILR achieves
perfectly structured decompilation, but its MCC is identical
to Phoenix’s result, despite the latter producing differently
structured code from the source. This is because MCC only
measures the number of independent paths without consid-
ering the resemblance of code structures. As a result, MCC
can return significantly lower scores for decompiled code
with spurious gotos rather than properly structured condi-
tions because conditions add compounding edges in the CFG.
For gotos, although Phoenix’s decompilation was structurally
closer to the source than DREAM’s decompilation, Phoenix’s
score is worse than DREAM’s score. Lastly, LoC rewards
decompilers for non-structurally related optimizations, such
as aggressive expression folding and constant propagation.

7.1 Graph Edit Distance
Conceptually, MCC is flawed because it does not consider

edge and node locations relative to the source. Using this
flaw as inspiration, we used the Graph Edit Distance (GED)
relative to the source CFG to encode edge-node location
differences into a metric. Prior work has used GED in bi-
nary similarity analysis by computing GED on binary-level
CFGs [7, 42]. We run GED on the CFGs of the source and as-
sociated decompilation to estimate their structural closeness.

We associate lower GED-to-source scores with easier-to-
understand decompilation. To study this association, we col-
lected results from Decomperson, a study of human-written
decompilation [11]. In Decomperson, participants manually
create decompilation given assembly with the target of having

the lowest assembly difference from the binary when com-
piled. With every submission, users attempt to get closer to
the source code.

In Figure 9, we graph the average exact GED score of 30
participants as they submit results on the winky challenge. We
could compute the exact GED scores because the functions
in this challenge were sufficiently small. Each participant
ended with a byte-match of 50% or higher. Their average
GED scores decrease over time, indicating lower GED scores
are likely associated with higher closeness to source, which
means fewer structural differences.

7.2 Control-Flow Graph Edit Distance
Unfortunately, computing an exact GED is NP-hard [10].

In practice, we have found exact GED is usually too expen-
sive to run on graphs with more than 12 nodes. When using
upper-bound GED estimation algorithms, their estimations
are significantly higher than the exact score, and, on exact
match graphs, they rarely return zero. Therefore, we design a
scalable algorithm, called Control-Flow Graph Edit Distance
(CFGED), that uses CFG-specific characteristics to improve
the scalability of GED estimations when applied to decompi-
lation.

CFGED decomposes the GED problem using the identified
SESE regions and uses exact GED when the region is small
enough, and approximate GED if the region is too large (as
the last resort). The CFGED between two CFGs is the sum
of the GED of all regions. This often returns a score that is
lower than the upper-bound GED approximation in the same
or faster time. An example of CFGED computation on two
graphs can be found in Appendix A.3.

To validate the accuracy of CFGED, we computed the exact
GED, the maximum GED, and the CFGED of all functions
with lower than 12 nodes in Coreutils 9.1. On all 506 samples,
CFGED returns a score between the maximum and exact.
CFGED gets the exact score on 64% of all samples. On
average, CFGED introduces a 35% overhead to the percent
difference score (the GED approximation divided by the max
possible score).

8 Evaluation

We evaluate all structuring algorithms using two sets of
C binaries: popular Debian packages and MSVC compil-
able packages. We attempt to answer the following research
questions through experiments:

RQ1. How well does SAILR structure function CFGs during
binary decompilation compared to state-of-the-art structuring
algorithms?
RQ2. Given that SAILR is guided by findings on GCC 9.5,
how does it perform on older and newer GCC versions?
RQ3. Given that SAILR is guided by findings on GCC 9.5,
how does it perform on binaries generated by different C
compilers?

Table 3: Structuring results on 7,355 functions across 26 popular Debian packages. The percent change relative to source is
shown on each sum. The CFGED percent change is shown w.r.t. Hex-Rays.

Metric Source SAILR Hex-Rays Ghidra Phoenix DREAM rev.ng
Sum Avg Med Sum Avg Med Sum Avg Med Sum Avg Med Sum Avg Med Sum Avg Med Sum Avg Med

Gotos 1,367 0.19 0.0 2,673 (95.5%) 0.36 0.0 6,115 (347.3%) 0.83 0.0 6,575 (380.9%) 0.89 0.0 8,497 (521.6%) 1.16 0 0 (100%) 0 0 0 (100%) 0 0
Bools 6,180 0.84 0.0 3,980 (35.6%) 0.54 0.0 4,279 (30.8%) 0.58 0.0 4,850 (21.5%) 0.66 0.0 2,685 (56.6%) 0.37 0.0 43,661 (600.5%) 5.94 0.0 2,003 (67.6%) 0.27 0.0
Calls 53,995 7.34 3.0 52,558 (2.6%) 7.15 3.0 52,508 (2.8%) 7.14 3.0 53,202 (1.5%) 7.23 3.0 51,167 (5.2%) 6.96 3.0 51,204 (5.2%) 6.96 3.0 166,798 (116.3%) 22.68 3.0
CFGED 0 0 0 166,468 (0.5%) 22.64 8.0 165,583 (0%) 22.52 8.0 187,509 (13.2%) 25.5 7.0 166,480 (0.5%) 22.64 8.0 338,231 (104.3%) 45.99 10.0 524,248 (216.6%) 71.29 8.0

Additionally, we explore tangentially related questions with
an extended evaluation set in Appendix A.4.

8.1 Evaluation Methodology

All experiments are performed on an Ubuntu 22.04 server.
During each experiment, we compile all .c files in a package
and use the compiler to output intermediate source files that
have been preprocessed. Next, we compile with debug sym-
bols, no inlining, and saved object files. We then record the
address-to-line mapping for each object file before stripping it
of debug information. The mapping is recorded for evaluation
with CFGED. Each object file has an associated intermediate
(.i) file and address mapping.

After compiling, we decompile every object file, which
is the non-linked version of the final executable, with every
decompiler and parse the output with Joern [45]. We use
Joern to collect metrics, as well as CFGs, from each decom-
piler to allow for decompilation that may not be recompilable.
We evaluate Hex-Rays 8.0 (IDA Pro), Ghidra 10.1, and the
ANGR DECOMPILER, which implements SAILR, Phoenix,
DREAM, and rev.ng’s Combing. Each structuring algorithm
is evaluated on the metrics in Section 8.2. To assure a fair
evaluation among all structuring algorithms, we only report
metrics on functions that successfully decompiled on all de-
compilers and did not crash on our measuring pipeline.
Reimplementation of existing algorithms. For fair evalua-
tion, we attempted to use prior work’s decompilers. However,
the Phoenix decompiler was not open-sourced, and the open-
sourced DREAM decompiler does not build in their specified
environment. We tried to use the rev.ng decompiler, but the al-
pha version crashed on most binaries in the Coreutils package,
which prohibited us from evaluating it. We reimplemented all
of them in the ANGR DECOMPILER.

8.2 Metrics

We evaluate the structuring algorithm of every decompiler
using two metrics.

Structuredness. Structuredness measures how often a struc-
turing algorithm creates C structures in the output. We follow
prior work evaluations [44]: we measure structuredness by
counting the number of gotos in the decompilation.
Faithfulness. Faithfulness measures how close the control
flow structure is to the original source’s. We use CFGED,
function calls, and Booleans expressions to measure the sim-

Table 4: Structuring results on 433 functions across Coreutils
compiled with various GCC versions and Clang.

Most-Recent Release Decompiler Gotos Bools Calls CFGED

Source N/A 20 438 4,761 0

GCC 5 October 10, 2017 SAILR 152 295 4,260 14,499
Hex-Rays 464 299 4,199 14,399

GCC 9 May 27, 2022 SAILR 169 284 4,277 13,462
Hex-Rays 447 290 4,353 13,266

GCC 11 April 21, 2022 SAILR 170 280 4,290 13,445
Hex-Rays 451 293 4,353 13,391

Clang 14 March 25, 2022 SAILR 167 292 4,290 22,879
Hex-Rays 454 303 4,335 22,671

Table 5: Structuring metrics on 45 unique functions across
Zlib compiled with MSVC.

Gotos Bools Calls CFGED

Source 0 70 158 0
SAILR 12 59 133 1,813
Hex-Rays 14 52 133 1,743

ilarity in flow, execution structure, and conditions to the
source.

We further ensure the structuring correctness of each decom-
piler’s output by manually sampling and verifying a small set
of decompiler output. We do not measure the correctness by
recompilability because the main contribution of our work is
structuring, not recompilable decompilation.

8.3 Structuring on Debian Packages
To answer RQ1, we focused on the effects of SAILR con-

cerning programs compiled with GCC 9.5 on the O2 optimiza-
tion level, the compiler configuration we studied. We evaluate
against all structuring algorithms on 26 popular Debian C
packages [1], listed in full in Appendix A.1. Table 3 shows
the results on each metric for every decompiler.

SAILR outperforms all algorithms in relative goto creation
but loses to Hex-Rays in CFGED by 0.5%. Although SAILR
loses in CFGED, the high reduction of gotos relative to Hex-
Rays indicates SAILR is removing gotos in a non-structurally
destructive way. In contrast, DREAM, which removes the
most gotos, differs from Hex-Rays by 104.3% on CFGED.

8.4 Generalizability Across Compilers
To answer RQ2 and RQ3, we evaluated SAILR on various

compiler versions and vendors. Building on the results of Ta-
ble 3, we focus on the differences between the best structuring

algorithms of the Debian package evaluation: Hex-Rays and
SAILR. In Table 4 we evaluate multiple versions of GCC as
well as Clang on Coreutils, the defacto decompilation evalu-
ation dataset [9, 24, 44]. Although Coreutils has a Windows
variant, it does not natively compile with MSVC. In lieu of
Coreutils, we chose Zlib since it was easily compilable. In
Table 5 we evaluate Hex-Rays and SAILR on Zlib, compiled
with MSVC 14.20.

Similar to the results in Table 3, SAILR marginally loses
to Hex-Rays on CFGED (no more than 1.5%), but improves
the gotos emitted across every compiler. Because the number
of gotos, calls, and Boolean operators are all fairly consistent,
we can conclude that the compiler-aware decompilation im-
provements that SAILR has on GCC 9 actually generalize
to historical versions of GCC. However, in the highly dif-
ferent MSVC compiler, SAILR loses significantly more on
CFGED, which may be due to hardcoded Windows-specific
schemas in Hex-Rays.

9 Discussion

To the best of our knowledge, this is the first effort for a
complete investigation of goto-inducing compiler transforma-
tions and the significance of undoing such transformations in
decompilers. We next discuss the limitations of SAILR.

The remaining gotos. While SAILR removes a lot of spuri-
ous gotos in decompilation, it does not remove all of them.
Through a manual analysis of the remaining gotos, we find
that they are caused by the following reasons: (a) Certain func-
tion calls not returning but angr is unaware, which leads to
incorrect function-level CFGs; (b) The decompiler choosing
the wrong edge among several candidates to virtualize, which
prevents SAILR from applying deoptimization techniques at
intended locations; and (c) SAILR condensing blocks that
were not impacted by ISD optimizations in compilers. We
believe (b) and (c) can be addressed by SAILR performing
an iterative search when picking edges to virtualize and parts
of code to deoptimize, which we leave as future work.
High CFGED between the best decompilation and source.
We also investigated why the CFGED scores are still so high,
even in cases where SAILR perfectly reverts every goto-
inducing optimization that the compiler introduces. There are
two main reasons. First, CFGED is still an approximation,
which can significantly differ from the actual exact GED on
larger CFGs. In a CFG with over 200 nodes and 100 edges,
we observed that the exact GED between the decompilation
and the source was as low as 4 while CFGED reported 306.
We envision that future algorithmic improvements on GED
computation will reduce GED scores in our measurement.
Second, CFGED is extremely sensitive to structural differ-
ences, and many structuring choices that a decompiler makes
(e.g., whether a node belongs to the loop body or not), while
leading to high structural differences, are ultimately unde-

cidable. We believe the use of statistical techniques, e.g.,
machine learning, will help immensely in these cases.
Architecture, platform, and compiler-specific study. Our
investigation is specific to x86-64 Linux user-space executa-
bles that are compiled using GCC or Clang, and some MSVC-
compiled Windows binaries. While it is likely to find new
types of goto-inducing compiler transformations under other
settings, decompiler authors can use the methodology we
presented in Section 3.2 to find and address them.
Compounding ISC and ISD optimizations do not always
cause gotos. In rare cases, compounding ISC and ISD opti-
mizations may create subgraphs that happen to match against
known graph schemas. As such, no unstructurable code re-
gions will be created. A graph-schema-matching decompiler
will generate a goto-free decompilation result, however it
does not structurally match the source. Fundamentally, this
is caused by the many-to-one mapping from legitimate C
source to binary code. We believe a natural solution is us-
ing a machine-learning approach to predict the most suitable
structuring result from the binary CFG and its context.
Using Hex-Rays to study gotos in Coreutils binaries. In
the goto-origin study, we used Hex-Rays to investigate gotos
in binary code with the assumption that Hex-Rays only per-
forms basic graph-schema-matching and does not proactively
remove gotos. We found that this assumption is false because
Hex-Rays seems to have more graph schemas than other de-
compilers. Fortunately, we did not notice any cases where
Hex-Rays would actively solve ISC- or ISD-optimizations.
We believe using a naive graph-schema-matching decompiler
can help increase accuracy of all goto sources.

10 Related Work

Control-flow Structuring. The two main methods for recov-
ering control-flow structures from CFGs are interval analysis
and structural analysis. Interval analysis [5, 16] partitions a
CFG into nested regions called intervals. The nested nature
ensures the data-flow analysis is not duplicating effort.

Structural analysis [37] is an extension of interval analysis,
allowing a syntax-driven method of data-flow analysis that is
normally reserved for abstract syntax trees to be applied on
intermediate representations of low-level code such as AIL,
VEX, and BIL. Structural analysis algorithms recover high-
level control constructs from CFGs for use in decompilation.

Engel et al. [21] extended structural analysis to C-specific
control statements, by proposing the SESS model. SESS
accounts for statements in C that appear before control-flow
changes induced by a break or continue. However, this
approach relies on pre-defined schemas that occur in CFGs
and introduces gotos that were not originally present in the
source code. The SAILR approach focuses specifically on
GCC-induced gotos.

A related area of research attempts to remove gotos at the
source code level [22, 41] by defining AST transformations

that replace gotos with an equivalent semantic-preserving
structure. This generally increases overall code size and com-
plexity and also can insert unnecessary Boolean variables.
Decompilers. Cifuentes’ PhD thesis [14] can be considered
the academic foundation for many modern decompilers. The
decompilation techniques, based on interval theory and ex-
panded on in follow-up work [15], were implemented in the
Intel 80286/DOS to C decompiler dcc.

Hex-Rays, a plugin for IDA, is the de facto commercial
decompiler. There is no official source on the techniques Hex-
Rays uses for decompilation. Schwartz et al. [9] noted that
Hex-Rays uses some form of improved structural analysis.

The Phoenix [9] decompiler is built with the Binary Analy-
sis Platform (BAP) [8]. Phoenix attempts to reduce the num-
ber of gotos in decompilation through iterative refinement
which will replace an edge with a goto if the structural analy-
sis algorithm cannot make forward progress. DREAM [44]
builds upon the techniques in the Phoenix [9] decompiler to
emit zero gotos by design. DREAM forcefully excludes gotos
with the use of Boolean expressions and state variables. While
it eliminates gotos, it can generate code with entangled execu-
tion paths [24]. rev.ng is a decompiler [17, 24] implementing
the Control Flow Combing algorithm to remove gotos by
aggressively duplicating code. These decompilers treat the
symptom of the problem—gotos appearing in decompilation—
but do not address the root of the problem. SAILR attempts
to remedy this by following a simple idea: to achieve high-
quality decompilation, decompilers must be compiler-aware.

Recent advances in deep learning techniques have led to
progress in the field of decompilation. Researchers have used
deep learning approaches to (1) enhance the quality of de-
compilation by predicting debug information [25], variable
names [12, 13, 26, 29], types [12, 46] and function names [6],
and (2) build an end-to-end, neural network-based decom-
piler [23]. These approaches open up exciting opportunities
for future research aimed at developing a general-purpose
end-to-end neural decompiler.

11 Conclusion

Decompilers seek the impossible—how to recover source
code using only binary code. This act of divination requires a
complex mix of binary analysis, graph analysis, and, funda-
mentally, engineering. We believe that the goal of a decom-
piler should be to get as close as possible to the original code
and that the only way to accomplish this is to be compiler-
aware. SAILR and the ANGR DECOMPILER represent the
next steps in this direction toward perfect decompilation.

Acknowledgement

This project has received funding from the following
sources: Defense Advanced Research Projects Agency
(DARPA) Contracts No. HR001118C0060, FA875019C0003,
N6600120C4020, and N6600122C4026; the Department of

the Interior Grant No. D22AP00145-00; the Department of
Defense Grant No. H98230-23-C-0270; and National Science
Foundation (NSF) Awards No. 2146568 and 2232915.

References
[1] Debian popularity contest statistics: Installations. https://

popcon.debian.org/by_inst.
[2] GIMPLE (GNU compiler collection (GCC) internals). https://

gcc.gnu.org/onlinedocs/gccint/GIMPLE.html.
[3] Hex-Rays – state of the art binary analysis solutions. https:

//www.hex-rays.com/.
[4] Martin Liska: Switch lowering improvements – slideslive. https:

//slideslive.com/38902416/switch-lowering-improvements.
[5] Frances E Allen. Control flow analysis. In Proceedings of the ACM

Symposium on Compiler Optimization, 1970.
[6] Fiorella Artuso, Giuseppe Antonio Di Luna, Luca Massarelli, and

Leonardo Querzoni. Function naming in stripped binaries using neural
networks. arXiv preprint arXiv:1912.07946, 2019.

[7] Martial Bourquin, Andy King, and Edward Robbins. Binslayer: accu-
rate comparison of binary executables. In Proceedings of the 2nd ACM
SIGPLAN Program Protection and Reverse Engineering Workshop,
pages 1–10, 2013.

[8] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J
Schwartz. Bap: A binary analysis platform. In International Con-
ference on Computer Aided Verification, pages 463–469. Springer,
2011.

[9] David Brumley, JongHyup Lee, Edward J Schwartz, and Maverick
Woo. Native x86 decompilation using semantics-preserving struc-
tural analysis and iterative control-flow structuring. In 22nd USENIX
Security Symposium (USENIX Security 13), pages 353–368, 2013.

[10] Horst Bunke. On a relation between graph edit distance and maximum
common subgraph. Pattern recognition letters, 18(8):689–694, 1997.

[11] Kevin Burk, Fabio Pagani, Christopher Kruegel, and Giovanni Vigna.
Decomperson: How humans decompile and what we can learn from it.
In USENIX Security Symposium, 2022.

[12] Qibin Chen, Jeremy Lacomis, Edward J Schwartz, Claire Le Goues,
Graham Neubig, and Bogdan Vasilescu. Augmenting Decompiler
Output with Learned Variable Names and Types. In Proceedings of the
USENIX Security Symposium, August 2022.

[13] Qibin Chen, Jeremy Lacomis, Edward J Schwartz, Graham Neubig,
Bogdan Vasilescu, and Claire Le Goues. Varclr: Variable semantic
representation pre-training via contrastive learning. arXiv preprint
arXiv:2112.02650, 2021.

[14] Cristina Cifuentes. Reverse compilation techniques. Citeseer, 1994.
[15] Cristina Cifuentes and K John Gough. Decompilation of binary pro-

grams. Software: Practice and Experience, 25(7):811–829, 1995.
[16] John Cocke. Global common subexpression elimination. In Proceed-

ings of the ACM Symposium on Compiler Optimization, 1970.
[17] Alessandro Di Federico, Pietro Fezzardi, and Giovanni Agosta. rev.

ng: A multi-architecture framework for reverse engineering and vul-
nerability discovery. In 2018 International Carnahan Conference on
Security Technology (ICCST), pages 1–5. IEEE, 2018.

[18] Edsger W Dijkstra. Letters to the editor: go to statement considered
harmful. Communications of the ACM, 11(3):147–148, 1968.

[19] Lukás Ďurfina, Jakub Křoustek, and Petr Zemek. Psybot malware: A
step-by-step decompilation case study. In 2013 20th Working Confer-
ence on Reverse Engineering (WCRE), pages 449–456. IEEE, 2013.

[20] Lukáš Ďurfina, Jakub Křoustek, Petr Zemek, Dušan Kolář, Tomáš
Hruška, Karel Masařík, and Alexander Meduna. Design of a retar-
getable decompiler for a static platform-independent malware analysis.
In International Conference on Information Security and Assurance,
pages 72–86. Springer, 2011.

https://popcon.debian.org/by_inst
https://popcon.debian.org/by_inst
https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html
https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html
https://www.hex-rays.com/
https://www.hex-rays.com/
https://slideslive.com/38902416/switch-lowering-improvements
https://slideslive.com/38902416/switch-lowering-improvements

[21] Felix Engel, Rainer Leupers, Gerd Ascheid, Max Ferger, and Marcel
Beemster. Enhanced structural analysis for c code reconstruction from
ir code. In Proceedings of the 14th International Workshop on Software
and Compilers for Embedded Systems, pages 21–27, 2011.

[22] Ana M Erosa and Laurie J Hendren. Taming control flow: A structured
approach to eliminating goto statements. In Proceedings of 1994 IEEE
International Conference on Computer Languages (ICCL’94), pages
229–240. IEEE, 1994.

[23] Cheng Fu, Huili Chen, Haolan Liu, Xinyun Chen, Yuandong Tian, Fari-
naz Koushanfar, and Jishen Zhao. A neural-based program decompiler.
arXiv:1906.12029 [cs], Jun 2019. arXiv: 1906.12029.

[24] Andrea Gussoni, Alessandro Di Federico, Pietro Fezzardi, and Gio-
vanni Agosta. A comb for decompiled c code. In Proceedings of
the 15th ACM Asia Conference on Computer and Communications
Security, pages 637–651, 2020.

[25] Jingxuan He, Pesho Ivanov, Petar Tsankov, Veselin Raychev, and
Martin Vechev. Debin: Predicting debug information in stripped
binaries. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pages 1667–1680, 2018.

[26] Alan Jaffe, Jeremy Lacomis, Edward J Schwartz, Claire Le Goues, and
Bogdan Vasilescu. Meaningful variable names for decompiled code: A
machine translation approach. In Proceedings of the 26th Conference
on Program Comprehension, pages 20–30, 2018.

[27] Linux Kernel. Linux Kernel, 2023. https://github.com/torvalds/
linux/tree/master/kernel.

[28] Donald E Knuth, James H Morris, Jr, and Vaughan R Pratt. Fast pattern
matching in strings. SIAM journal on computing, 6(2):323–350, 1977.

[29] Jeremy Lacomis, Pengcheng Yin, Edward Schwartz, Miltiadis Allama-
nis, Claire Le Goues, Graham Neubig, and Bogdan Vasilescu. DIRE:
A neural approach to decompiled identifier naming. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pages 628–639. IEEE, 2019.

[30] JongHyup Lee, Thanassis Avgerinos, and David Brumley. Tie: Princi-
pled reverse engineering of types in binary programs. In Proceedings of
the 18th Annual Network and Distributed System Security Symposium
(NDSS’11), page 18, Feb 2011.

[31] Alessandro Mantovani, Simone Aonzo, Yanick Fratantonio, and Davide
Balzarotti. RE-Mind: a first look inside the mind of a reverse engineer.
In 31st USENIX Security Symposium (USENIX Security 22), pages
2727–2745, Boston, MA, August 2022. USENIX Association.

[32] Alessandro Mantovani, Luca Compagna, Yan Shoshitaishvili, and
Davide Balzarotti. The convergence of source code and binary vulner-
ability discovery–a case study. In Proceedings of the 2022 ACM on
Asia Conference on Computer and Communications Security, pages
602–615, 2022.

[33] Omid Mirzaei, Roman Vasilenko, Engin Kirda, Long Lu, and Amin
Kharraz. Scrutinizer: Detecting code reuse in malware via decompila-
tion and machine learning. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, pages 130–150.
Springer, 2021.

[34] Matthew Noonan, Alexey Loginov, and David Cok. Polymorphic type
inference for machine code. In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
page 27–41, Mar 2016.

[35] NSA. The Ghidra decompiler, 2023. https://ghidra-sre.org/.
[36] Pemma Reiter, Hui Jun Tay, Westley Weimer, Adam Doupé, Ruoyu

Wang, and Stephanie Forrest. Automatically mitigating vulnerabilities
in x86 binary programs via partially recompilable decompilation. arXiv
preprint arXiv:2202.12336, 2022.

[37] Micha Sharir. Structural analysis: A new approach to flow analysis in
optimizing compilers. Computer Languages, 5(3-4):141–153, 1980.

[38] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, et al. SoK:(state of) the art of war:

Offensive techniques in binary analysis. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 138–157. IEEE, 2016.

[39] Asia Slowinska, Traian Stancescu, and Herbert Bos. Howard: a
dynamic excavator for reverse engineering data structures. In Pro-
ceedings of the 18th Annual Network and Distributed System Security
Symposium (NDSS’11), Feb 2011.

[40] SpyEye. SpyEye, 2023. https://github.com/ytisf/theZoo/
tree/master/malware/Binaries/SpyEye.

[41] M. Howard Williams and G Chen. Restructuring pascal programs
containing goto statements. The Computer Journal, 28(2):134–137,
1985.

[42] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn
Song. Neural network-based graph embedding for cross-platform
binary code similarity detection. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS
’17, pages 363—-376, New York, NY, USA, 2017. Association for
Computing Machinery.

[43] Khaled Yakdan, Sergej Dechand, Elmar Gerhards-Padilla, and Matthew
Smith. Helping johnny to analyze malware: A usability-optimized
decompiler and malware analysis user study. In 2016 IEEE Symposium
on Security and Privacy (SP), pages 158–177. IEEE, 2016.

[44] Khaled Yakdan, Sebastian Eschweiler, Elmar Gerhards-Padilla, and
Matthew Smith. No more gotos: Decompilation using pattern-
independent control-flow structuring and semantic-preserving transfor-
mations. In Proceedings of the 22nd Annual Network and Distributed
System Security Symposium (NDSS 2015), 2015.

[45] Fabian Yamaguchi, Christian Wressnegger, Hugo Gascon, and Konrad
Rieck. Chucky: Exposing missing checks in source code for vulnera-
bility discovery. In Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, pages 499–510, 2013.

[46] Zhuo Zhang, Yapeng Ye, Wei You, Guanhong Tao, Wen-chuan Lee,
Yonghwi Kwon, Yousra Aafer, and Xiangyu Zhang. Osprey: Recovery
of variable and data structure via probabilistic analysis for stripped
binary. In 2021 IEEE Symposium on Security and Privacy (SP), page
813–832. IEEE, May 2021.

A Appendix

A.1 Popular Debian Packages for Evaluation
We evaluated SAILR on 26 randomly selected from the top

50 Debian packages collected from the Popcon [1] list: bash,
libselinux, shadow, libedit, base-passwd, openssh-portable,
dpkg, dash, grep, kmod, diffutils, findutils, gnutls, iproute2,
gzip, sysvinit, bzip2, libacl, libexpat, libbsd, tar, rsyslog,
cronie, zlib, e2fsprogs, and coreutils.

A.2 Case Study: Constant Depropagation
To better understand more complex cases of deoptimization,

we document a case study involving constant depropagation
in the Coreutils 9.1 package of compounding optimizations.

The binary fmt contains an ISD optimization in the func-
tion main, which causes a duplication of a subgraph shown in
Listing 2. However, this case does not match any ISD deop-
timization schema because the calls to xdectoumax are not
the same, differing by a single argument value. The calls on
Lines 7 and 11 originate from the same source line and are du-
plicates, but the constant which is assigned to max_width on
Line 2 is constant-propagated, causing them to differ after the

https://github.com/torvalds/linux/tree/master/kernel
https://github.com/torvalds/linux/tree/master/kernel
https://ghidra-sre.org/
https://github.com/ytisf/theZoo/tree/master/malware/Binaries/SpyEye
https://github.com/ytisf/theZoo/tree/master/malware/Binaries/SpyEye

A

B C

D

E

G1

A

B

D’

C

D

EF

G2

⇒

A

B C

D

G1

A

B

D’

C

D

G2

Figure 10: A single round of CFGED approximation and region collapsing. Every round, a region collapses after computing the
GED inside the region. Additionally, the difference in the edges source and destination are added as edits.

ISD optimization. To revert this ISD case, the optimizations
must be undone in reverse order.

SAILR first runs a KMP similarity matching algorithm to
find arguments that may differ across calls. When these argu-
ments are identified, SAILR checks to see if one argument
is symbolic (such as a variable) and one is constant. If this is
true, SAILR uses Reaching Definitions Analysis to find all
the possible values of the symbolic argument on the path with
the constant. If the symbolic argument can only equal the
constant on that path, it is replaced by the symbolic variable.

In Listing 2 this makes both calls to xdectoumax an exact
duplicate. Because both calls are duplicates, have a common
successor to their blocks, and at least one is connected by a
goto, this case matches the ISD algorithm. When this case is
merged only one xdectoumax remains, with the assignment
blocked by the reaching conditions of the two statements.

A.3 Computing CFGED
Figure 10 shows an example computation of CFGED be-

tween G1 and G2. CFGED starts by finding two tail re-
gions that contain the same head node across graphs. In the
decompilation-to-source comparison, the addresses associ-
ated with each decompilation line are used to map source lines
to nodes. Because a tail region contains no nested regions, the
size of these sub-graphs is often small when mapped correctly.

The highlighted regions in Figure 10 have a GED of 2.
Because there are also edges leaving these regions, we must
check the edit distance of the region’s successor. There is
a missing edge and node in G1 that should have an edge to
the successor. Adding this node and edge constitutes an edit
distance of 2. In practice, this can be computed by running
GED on the region plus its successor node. In this example,
round one has a total CFGED score of 4: 2 for the single edge
and node conflict (F, D) and 2 for the GED of the regions.

Continuing, the next region collapsing round would have
no more regions to collapse and would run GED on G1 and
G2. The resulting GED is 3, with the total CFGED to 7, which
is equal to the exact GED score of 7.

A.4 Extended Evaluations
Ablation Study. In this experiment, we measure the impact
of deoptimization (discussed in Section 5) and knowledge
expansion (Section 6). We use three structuring algorithm

1 max_width = 0x4b;
2 if (v0) {
3 max_width = xdectoumax(v0, 0x0, 0x9c4, &.LC11,
4 dcgettext(NULL, "invalid width", 0x5), 0x0);
5 if (!v1)
6 goto LABEL_40cd86;
7 goal_width = xdectoumax(v1, 0x0, max_width, &.LC11,
8 dcgettext(NULL, "invalid width", 0x5), 0x0);
9 } else {

10 if (v1) {
11 goal_width = xdectoumax(v1, 0x0, 0x4b, &.LC11,
12 dcgettext(NULL, "invalid width", 0x5), 0x0);
13 max_width = goal_width + 10;
14 goto LABEL_40ccc7;
15 }
16 Label_40cd86:
17 goal_width = (max_width * 187 >> 31
18 CONCAT max_width * 187) /m 200;
19 }
20 Label_40ccc7:
21 v17 = optind;

Listing 2: An example ISD case from the Coreutils binary
fmt on function main.

Table 6: Results of the ablation study on Coreutils investigat-
ing the impact of deoptimization and knowledge expansion.

Gotos Bools Calls CFGED
Sum Avg Med Sum Avg Med Sum Avg Med Sum Avg Med

Source 40 5 0 1,291 27 1.35 11,690 173 12.27 0 0 0
Phoenix 1,761 37 1.85 534 12 0.56 10,136 173 10.64 40,733 918 42.74
SAILR Lite 1,410 67 1.48 932 20 0.98 10,063 173 10.56 40,384 928 42.38
SAILR 666 19 0.7 770 20 0.81 10,322 173 10.83 40,489 1,382 42.49

variants: Phoenix with improvements in Section 6.1, SAILR
Lite (Phoenix with improvements in Section 6), and SAILR.
We decompile 953 functions in Coreutils 9.1 compiled under
optimization level O2. As shown in Table 6, both deoptimiza-
tion and knowledge expansion are necessary for reducing
gotos and CFGED scores. Deoptimization contributes more
than knowledge expansion in terms of goto reduction.

Linux Kernel Study. To better understand how SAILR struc-
tures code highly saturated with gotos, we evaluate SAILR
against other structuring algorithms on a subset of the Linux
kernel [27]. We randomly picked 100 source files (and object
files) from the core kernel code base, collected 802 functions,
and ran decompilers against them. Table 7 shows the result:
SAILR outperforms other solutions in terms of relative goto
emittance to source but shows slightly worse CFGED scores.

Table 7: Linux kernel structuring evaluation.

Source SAILR Hex-Rays Ghidra Phoenix DREAM rev.ng

Gotos 120 136 311 352 457 0 0
Bools 737 345 354 519 277 2,759 150
Calls 4,306 3,668 3,376 3,348 3,226 3,248 5,347
CFGED 0 19,096 18,916 18,576 18,956 29,400 25,903

Table 8: Decompilation of SpyEye with generic readability
metrics.

SAILR Hex-Rays Ghidra Phoenix DREAM rev.ng

Gotos 0 0 0 20 0 0
Bools 17 15 17 8 33 1
LoC 1,640 878 1,881 1,690 1,681 2,186

Malware Study. We also evaluated SAILR on a malware
sample: the SpyEye malware on Windows [40]. In Table 8,
we compare SAILR against other structuring algorithms on
54 functions. Because there is no source code to compare
against, we use generic readability metrics, which may not
reflect structural closeness.
Decompilation Times. In Table 9 we show the decompila-
tion times across 1272 functions in Coreutils 9.1 compiled
with GCC 9.5 O2. The ANGR DECOMPILER takes signifi-
cantly longer to decompile due to its Python implementation.
SAILR takes longer than our other structuring algorithms
because of a naive implementation for the search phase for
ISD deoptimization. In short, SAILR uses a shortest-path
algorithm to find the head for deduplication, which we believe
can eliminated with future engineering.

Table 9: Decompilation times (in seconds) across all functions
in Coreutils.

SAILR Hex-Rays Ghidra Phoenix DREAM rev.ng

Median 1.16 0.01 0.05 0.82 0.8 0.71
Mean 5.24 0.03 0.07 2.15 2.08 2.33
Max 606.7 0.38 1.06 55.32 31.55 329.33
Sum 6,670.0 31.84 91.43 2,735.03 2,647.14 2,962.65

Compiler Configurations Study. To understand the full ef-
fect of different compiler optimizations on SAILR, we com-
piled the same 26 Debian packages in Section 8.3 on all
optimization levels for GCC 9.5. In Table 10 we show a
comparison against other structuring algorithms on 5,752
functions. The result shows that SAILR consistently yields
the closest number of gotos (except O0) with CFGED scores
being very close (within 6%) to the lowest CFGED scores
(from Hex-Rays). We believe SAILR’s poor results on go-
tos and CFGED compared to Hex-Rays is due to Hex-Rays
maturity in schema for unoptimized binaries.
Expanded Multi-Compiler Study. We expanded our results
from Table 4 in Table 11 to include all decompilers supported
in our evaluation pipeline. Note, that there are fewer functions
(392 total) in these results due to functions missing across
more decompilers.

def deoptimize_isd(duplicate_graph_pair, graph):
merged_graph = merge_pair_graphs(duplicate_graph_pair)
remove_pair_nodes_from_graph(graph_pair, graph)
graph = compose_graphs_of_many(graph, merged_graph)
for head_node in heads_of_graphs(merged_graph):

point_old_predecessors_to_node(head_head)
for leaf_node in ends_of_graphs(merged_graph):

conditional_node = make_reaching_cond_node(leaf_node)
graph.add_edge(leaf_node, conditional_node)

for node in new_conditional_nodes(graph):
original_leafs = leaf_nodes(duplicate_graph_pair)
for leaf in original_leafs:

graph.add_edge(
node,
original_edge_by_condition(leaf)

)
for node in new_conditional_nodes(graph):

simplify_and_merge_adjacent_conditionals(node)
return graph

Listing 3: Pseudocode of the SAILR ISD deoptimization
algorithm. It takes as input a pair of correctly identified dupli-
cate graph pairs and the original graph to be deoptimized. It
outputs the deoptimized graph.

def deoptimize_isc(target_node, graph):
exit_regions = get_exit_regions(graph)
node_chain = []
next_node = graph.successors(target_node)[0]
graph.remove_edge(target_node, next_node)
while next_node is not None:

node_chain.append(next_node)
successors = graph.successors(next_node)
if len(successors) > 1:

break
next_node = successors[0]

last_node = target_node
for node in node_chain

if is_region_head(node, exit_regions):
new_nodes = copy_region_nodes(node)
graph.add_edges(last_node, new_nodes)
break

else:
graph.add_edge(last_node, copy(node))
last_node = node

return graph

Listing 4: Pseudocode of the SAILR ISC deoptimization
algorithm.

Table 10: A comparison of structuring algorithms across optimization levels on GCC 9.5 for Debian packages.

Metric O0 O1 O2 O3
Sum Avg Med Sum Avg Med Sum Avg Med Sum Avg Med

Source

Gotos 1,000 0.17 0.0 1,000 0.17 0.0 1,000 0.17 0.0 1,000 0.17 0.0
Bools 4,252 0.74 0.0 4,256 0.74 0.0 4,256 0.74 0.0 4,256 0.74 0.0
Calls 38,828 6.75 3.0 38,897 6.76 3.0 38,897 6.76 3.0 38,897 6.76 3.0
CFGED 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0

SAILR

Gotos 426 0.07 0.0 1,148 0.2 0.0 1,542 0.27 0.0 1,596 0.28 0.0
Bools 3,382 0.59 0.0 2,628 0.46 0.0 2,651 0.46 0.0 2,731 0.47 0.0
Calls 38,021 6.61 3.0 38,818 6.75 3.0 37,921 6.59 3.0 38,221 6.64 3.0
CFGED 92,198 16.03 5.0 105,786 18.39 7.0 110,358 19.19 7.0 115,517 20.08 7.0

Hex-Rays

Gotos 652 0.11 0.0 2,654 0.46 0.0 3,718 0.65 0.0 3,924 0.68 0.0
Bools 4,416 0.77 0.0 2,935 0.51 0.0 2,936 0.51 0.0 3,046 0.53 0.0
Calls 39,433 6.86 3.0 39,250 6.82 3.0 38,037 6.61 3.0 38,311 6.66 3.0
CFGED 86,658 15.07 4.0 104,118 18.1 7.0 109,028 18.95 7.0 114,335 19.88 7.0

Ghidra

Gotos 1,453 0.25 0.0 3,311 0.58 0.0 4,209 0.73 0.0 4,324 0.75 0.0
Bools 4,341 0.75 0.0 3,270 0.57 0.0 3,366 0.59 0.0 3,741 0.65 0.0
Calls 39,305 6.83 3.0 40,203 6.99 3.0 38,767 6.74 3.0 38,960 6.77 3.0
CFGED 117,150 20.37 5.0 123,810 21.52 7.0 125,989 21.9 7.0 130,729 22.73 7.0

Phoenix

Gotos 3,767 0.65 0.0 4,438 0.77 0.0 5,501 0.96 0.0 5,712 0.99 0.0
Bools 2,631 0.46 0.0 1,803 0.31 0.0 1,878 0.33 0.0 1,960 0.34 0.0
Calls 38,034 6.61 3.0 38,000 6.61 3.0 37,062 6.44 3.0 37,303 6.49 3.0
CFGED 94,257 16.39 4.0 106,807 18.57 7.0 110,871 19.28 7.0 115,350 20.05 7.0

DREAM

Gotos 0 0 0 0 0 0 0 0 0 0 0 0
Bools 10,976 1.91 0.0 17,448 3.03 0.0 28,654 4.98 0.0 30,048 5.22 0.0
Calls 38,036 6.61 3.0 38,023 6.61 3.0 37,090 6.45 3.0 37,337 6.49 3.0
CFGED 138,318 24.05 5.0 176,340 30.66 8.0 223,428 38.84 9.0 234,183 40.71 9.0

rev.ng

Gotos 0 0 0 0 0 0 0 0 0 0 0 0
Bools 1,732 0.3 0.0 1,747 0.3 0.0 960 0.17 0.0 974 0.17 0.0
Calls 93,713 16.29 3.0 108,128 18.8 3.0 97,076 16.88 3.0 97,752 16.99 3.0
CFGED 271,168 47.14 6.0 292,823 50.91 7.0 282,414 49.1 7.0 295,824 51.43 7.0

Table 11: A comparison of decompilation on Coreutils binaries compiled by GCC 5, GCC 9, GCC 11, and Clang 14 with O2.

Metric GCC 5 GCC 9 GCC 11 Clang 14
Sum Avg Med Sum Avg Med Sum Avg Med Sum Avg Med

Source

Gotos 4 0.01 0.0 4 0.01 0.0 4 0.01 0.0 4 0.01 0.0
Bools 273 0.7 0.0 263 0.67 0.0 263 0.67 0.0 266 0.68 0.0
Calls 3,724 9.5 5.0 3,726 9.51 5.0 3,726 9.51 5.0 3,781 9.65 5.0
CFGED 0 0 0 0 0 0 0 0 0 0 0 0

SAILR

Gotos 56 0.14 0.0 68 0.17 0.0 70 0.18 0.0 66 0.17 0.0
Bools 168 0.43 0.0 159 0.41 0.0 160 0.41 0.0 172 0.44 0.0
Calls 3,418 8.72 4.0 3,430 8.75 4.0 3,420 8.72 4.0 3,431 8.75 4.0
CFGED 11,880 30.31 7.5 8,209 20.94 8.0 8,272 21.1 7.5 9,027 23.03 9.0

Hex-Rays

Gotos 208 0.53 0.0 226 0.58 0.0 224 0.57 0.0 216 0.55 0.0
Bools 184 0.47 0.0 179 0.46 0.0 177 0.45 0.0 180 0.46 0.0
Calls 3,485 8.89 5.0 3,485 8.89 5.0 3,487 8.9 5.0 3,405 8.69 4.0
CFGED 11,727 29.92 7.0 8,065 20.57 7.0 8,041 20.51 7.0 8,966 22.87 9.0

Ghidra

Gotos 216 0.55 0.0 215 0.55 0.0 203 0.52 0.0 101 0.26 0.0
Bools 208 0.53 0.0 203 0.52 0.0 206 0.53 0.0 228 0.58 0.0
Calls 3,525 8.99 5.0 3,579 9.13 5.0 3,577 9.12 5.0 1,846 4.71 2.0
CFGED 12,373 31.56 7.0 8,878 22.65 7.5 8,810 22.47 7.0 8,859 22.6 7.0

Phoenix

Gotos 291 0.74 0.0 306 0.78 0.0 300 0.77 0.0 339 0.86 0.0
Bools 111 0.28 0.0 115 0.29 0.0 113 0.29 0.0 115 0.29 0.0
Calls 3,397 8.67 4.0 3,399 8.67 4.0 3,400 8.67 4.0 3,403 8.68 4.0
CFGED 11,966 30.53 7.0 8,370 21.35 8.0 8,434 21.52 7.5 9,357 23.87 9.0

DREAM

Gotos 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0
Bools 1,569 4.0 0.0 1,640 4.18 0.0 1,774 4.53 0.0 1,411 3.6 0.0
Calls 3,397 8.67 4.0 3,400 8.67 4.0 3,401 8.68 4.0 3,402 8.68 4.0
CFGED 16,940 43.21 9.0 13,476 34.38 9.5 13,389 34.16 9.0 14,245 36.34 12.0

rev.ng

Gotos 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0
Bools 29 0.07 0.0 33 0.08 0.0 32 0.08 0.0 72 0.18 0.0
Calls 5,228 13.34 5.0 5,284 13.48 5.0 5,235 13.35 5.0 5,738 14.64 5.0
CFGED 17,457 44.53 7.0 13,289 33.9 8.0 13,447 34.3 8.0 17,066 43.54 10

	Introduction
	Background & Motivation
	Modern C Compilation
	Modern Binary Decompilation
	Structuring in C Decompilation
	Motivation

	Goto-Inducing Compiler Transformations
	Enumerating Missing Graph Schemas
	Measuring Goto Introduction
	Goto-Inducing Transformations in GCC

	Overview of SAILR
	The Decompilation Pipeline
	Lifting, Simplification, and Variable Recovery
	SAILR Control Flow Structuring
	C Pseudocode Emission

	Major Contributions of SAILR

	Deoptimizing Decompilation
	ISD Optimizations
	ISC Optimizations
	Miscellaneous Optimizations

	Narrowing Knowledge Gaps
	Non-returning Functions
	Additional Graph Schemas

	Measuring the Quality of Structuring
	Graph Edit Distance
	Control-Flow Graph Edit Distance

	Evaluation
	Evaluation Methodology
	Metrics
	Structuring on Debian Packages
	Generalizability Across Compilers

	Discussion
	Related Work
	Conclusion
	Appendix
	Popular Debian Packages for Evaluation
	Case Study: Constant Depropagation
	Computing CFGED
	Extended Evaluations

