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Abstract
Recently, a novel method known as Page Spray emerges, fo-
cusing on page-level exploitation for kernel vulnerabilities.
Despite the advantages it offers in terms of exploitability,
stability, and compatibility, comprehensive research on Page
Spray remains scarce. Questions regarding its root causes, ex-
ploitation model, comparative benefits over other exploitation
techniques, and possible mitigation strategies have largely
remained unanswered. In this paper, we conduct a system-
atic investigation into Page Spray, providing an in-depth un-
derstanding of this exploitation technique. We introduce a
comprehensive exploit model termed the DIRTYPAGE model,
elucidating its fundamental principles. Additionally, we con-
duct a thorough analysis of the root causes underlying Page
Spray occurrences within the Linux Kernel. We design an
analyzer based on the Page Spray analysis model to identify
Page Spray callsites. Subsequently, we evaluate the stability,
exploitability, and compatibility of Page Spray through metic-
ulously designed experiments. Finally, we propose mitigation
principles for addressing Page Spray and introduce our own
lightweight mitigation approach. This research aims to as-
sist security researchers and developers in gaining insights
into Page Spray, ultimately enhancing our collective under-
standing of this emerging exploitation technique and making
improvements to the community.

1 Introduction
The Linux operating system, known for its complexity, has
gained widespread popularity in today’s world. It serves as
the foundation for critical real-world components, including
cloud systems, infrastructure web servers, and various cus-
tomized operating systems.

To defend Linux against potential threats, developers and
designers have implemented a range of protective and mit-
igation techniques, such as SMEP [21], SMAP [41], and
KASLR [14], operating at different levels. In response to
these defensive measures, security researchers have innova-
tively introduced new exploitation techniques and made as-
sessments, such as Elastic Objects [3], K(H)eaps [46], and
DirtyCred [30], to circumvent these security "barriers" during

exploitation.
As the field of exploitation techniques continues to evolve,

there remains an ongoing discourse on refining and enhanc-
ing control over kernel-heap granularity. Among these tech-
niques, Linux Kernel Heap Object Spray stands out as the
predominant method. Heap Object Spray has found utility
in exploiting a variety of common vulnerabilities, including
Use-After-Free (UAF) [13], Double Free (DF) [12], and Out-
of-Bounds (OOB) [10, 11] vulnerabilities. These traditional
approaches primarily center around the manipulation of heap
object granularity.

In recent times, a page-level exploitation technique has
made its appearance in high-quality exploits, which differs
from traditional object spray in control granularity. The capa-
bility to control and execute data spraying at the page level
introduces new possibilities, not only for offensive security
researchers but also for defense and mitigation designers ap-
proaching security challenges from various angles.

Despite being an emerging technique in Linux kernel ex-
ploitation, the security impact of Page Spray has been under-
estimated, and Page Spray has been considered obsolete to
modern Linux systems. Prior Page Spray attacks [45]1 only
work under constrained memory environments (hundreds of
MBs memory) where the Linux operating system will allocate
kernel-freed physical pages for user-space memory requests
when the system is under memory pressure. Such situation un-
likely happens in modern Linux systems as memory increases
significantly and that modern Linux operating systems will
kill a memory-intensive user-space process to handle extra
user-space memory requests under memory pressure. There-
fore, prior Page Spray attacks no longer work in modern Linux
operating systems.

However, we discover that Page Spray can still work
through new methods. The original page attack relies on user
pages for spraying, which will not work in currently normal
scenarios due to the separate allocation of user pages and
SLUB pages in distinct memory zones. Previous research

1This paper names Page Spray physmap-based attacks. We use the term
“Page Spray” in this paper since this name is more broadly used in the Linux
kernel security community.



indicated that during periods of intense memory pressure, the
page allocator might allocate user pages to the kernel page
zone, facilitating page-level reuse. However, this practice is
no longer feasible due to the increase in device memory, pos-
ing a risk of destabilizing the kernel and triggering OOM kill.
In contrast, the method in our study works effectively under
current standard conditions without stressing kernel memory.
Instead of leveraging user-space memory allocation, it uses
kernel-space callsites to invoke Page Spray within the kernel.

Furthermore, the contribution of our work is not only to
analyze the methodologies of Page Spray, but also is a
comprehensive study on many aspects of it that have not
been studied before, such as its root cause, exploitation effec-
tiveness & stability, and how it can be mitigated with existing
approaches as well as our own proposed approach.

To this end, we systematically unravel and formalize its
exploitation model, accounting for various scenarios and cir-
cumstances.

Moreover, we delve into the origins of this technique by
scrutinizing kernel code across different subsystems, ulti-
mately identifying three root causes: Raw Page-Level Buffer,
Non-linear Page Frags Buffer, and Mmap & Zero Copy Calls.
These root causes unveil inherent security risks at the design
level within the Linux Kernel. We propose an analysis model
and develop an LLVM-based analyzer to facilitate the identi-
fication of potential and potent Page Spray invocations within
the Kernel. Leveraging these analysis tools, we successfully
pinpoint 21 callsites within the Kernel that can be used in
Page Spray exploitation.

Additionally, we demonstrate Page Spray’s distinctive ad-
vantages, highlighting its unique attributes concerning ex-
ploitability, stability, and compatibility through real-world
evaluations. Furthermore, we delve into the principles of mit-
igating Page Spray, introducing our lightweight mitigation
approach. Our research uncovers intriguing insights, such as
Page Spray’s ability to transform seemingly challenging-to-
exploit or even previously unexploitable vulnerabilities into
viable targets for security researchers. At a practical level, we
have successfully applied this technique to various con-
texts, including Desktop Ubuntu, Android Kernel [31],
and Cloud Environment in Google kCTF [22], won the
novel exploitation award, and some of which have involved
zero-day exploits.

In summary, this paper makes the following contributions:

• We provide a well-structured and comprehensive formaliza-
tion of the Page Spray exploitation technique. Our model
showcases the compatibility and adaptability of Page Spray
across various vulnerability types.

• We conduct a methodical evaluation of the exploitability
and stability of the Page Spray exploitation technique. This
emerging and promising technique has been relatively un-
explored, making our study a valuable addition to the un-
derstanding of Page Spray.

• We systematically analyze the root causes of Page Spray
Exploitation within the Linux Kernel. Our analysis identi-
fies key design-level security risks, categorizing these into
three distinct root causes. We also introduce an analysis
model, and implement it as a LLVM-based analyzer for
Page Spray to identify the occurrences of such root causes
in the kernel.

• To raise awareness within the community, we discuss and
evaluate general and potential mitigation techniques for
countering Page Spray exploitation. Additionally, we intro-
duce a lightweight mitigation approach.

2 Background

2.1 Kernel Heap Allocator
To enhance memory performance and reduce fragmentation,
the Linux kernel has incorporated the concept of an object-
based allocator for managing kernel heap objects.

Among various heap allocators [1, 7, 34], the SLUB allo-
cator is the most common one in Linux. From a higher-level
perspective, the heap allocator in the Linux kernel can be
conceptualized as a cache size-based allocator, closely linked
to the page allocator, which will be comprehensively dis-
cussed in the subsequent subsection. The “cache” serves as
the meta-structure for managing various heap objects within
the allocator. At the cache granularity level, the kernel al-
locates memory pages from the page allocator and divides
them into uniform-sized fragments, each serving as a memory
slot for maintaining a heap object. Throughout the cache’s
lifecycle, as the available memory within a cache is being
exhausted, the kernel allocates additional pages from the page
allocator and assigns them to the heap allocator to supplement
the memory pool. Conversely, when a specific cache is no
longer in use, i.e. there are no more in-use objects within the
cache, the kernel prioritizes the recycling of allocated pages,
returning them to the page allocator for potential reuse.

2.2 Kernel Page Allocator
Kernel page allocator serves as the underlying foundation
for kernel heap allocator. This interaction comes into play
when the heap allocator either recycles or reclaims pages. The
buddy system, which has emerged as a prominent algorithm
for memory allocation within the page context, operates by di-
viding the available memory into blocks. These blocks adhere
to a uniform size, with each block possessing dimensions that
are exact powers of two.

Linux kernel implements distinct memory zones, each car-
rying specific attributes aimed at optimizing page allocation.
Within each zone, a reserve of free memory is maintained to
facilitate page allocation. In free memory areas, free pages
are organized into separate linked lists based on their size
and attributes, with each list representing pages of a specific
size and attribute. When a page allocation request is initiated,



the kernel identifies the most suitable match of free pages by
considering the allocation attributes and the required size.

Moreover, the node within the kmem_cache serves as a struc-
tural component monitoring partially full and full slabs within
a specific node in a NUMA system. For instance, if a newly
allocated object is the final available object within the CPU
slab, then the associated “active” slab is transferred to the full
list corresponding to its node. Simultaneously, the first slab
from the CPU slab’s partial list is newly designated as the
“active” slab.
GFP (Get Free Pages) flags. GFP flags serve as a means to
characterize the attributes of page allocation. Different GFP
flags, assigned by higher-level components, have the potential
to yield different fundamental behaviors. For example, when
utilizing GFP_DMA and GFP_DMA32 flags, the kernel is instructed
to ensure that the allocated memory is accessible by hardware
with limited addressing capabilities in DMA.
Fallback operation. During the allocation process, begin-
ning at the zone level, the kernel diligently scrutinizes the
selected memory zone to ensure a close match with the de-
sired attributes. A comprehensive evaluation is conducted to
determine the suitability of the chosen zone for the allocation.
In instances where the assessed zone is found to be unsuit-
able, the memory allocator may proceed to revert or fallback
to alternative memory zones for allocation.

3 Threat Model
In our established threat model, we assume that, in a real-
world exploitation scenario, an adversary gains access to un-
privileged permissions within the Linux environment and
aims to exploit a kernel vulnerability related to heap mem-
ory corruption such as UAF, DF, and OOB as a means to
escalate their privileges. It is important to note that we take
into consideration typical security protections and mitigations
that are enabled on most real-world Linux systems, including
KASLR [14], SMEP [21], SMAP [41], KPTI [35], FREEL-
IST RANDOM [16], HARDENED FREELIST [37], CFI [15].
For Android cases, we also include KCFI [17], and Memory
Tagging [47] on Pixel devices.

Mitigations that are not integrated in the mainline Linux
kernel at the time this paper was written, such as AUTOSLAB
and SLAB VIRTUAL, are not included in our threat model.
However, to provide a comprehensive study, their effective-
ness against Page Spray’s exploitability is still studied, di-
cussed and analyzed in Section 9.2.

Furthermore, we make the explicit choice to exclude any
hardware-level vulnerabilities or side-channel mechanisms
that might be leveraged to facilitate the exploitation process.
Finally, we do not account for variations in architecture codes
within the Linux kernel as part of our analysis.

4 Page Spray Exploit Model Analysis
In this section, we provide a high-level overview of the ex-
ploitation model associated with Page Spray, drawing from

our extensive analysis. We break down the Page Spray tech-
nique into four main steps, showing how it operates during
the exploitation of kernel heap vulnerabilities. Furthermore,
we showcase the versatility of Page Spray by demonstrating
its applicability to different types of vulnerabilities.

4.1 Basic Exploitation Model
We now introduce a foundational exploitation model for Page
Spray, which we denote as DIRTYPAGE. This model is pre-
sented at a high level to offer a clear understanding without
delving into excessive technical intricacies.

DIRTYPAGE operates by employing three key types of heap
objects: (1) padding objects are responsible for occupying
specific positions in the heap memory, (2) vulnerable object
corresponds to the case-specific object capable of triggering
the vulnerability, (3) victim object represents the object that
is intended to be corrupted by the end of DIRTYPAGE. In
our model, padding objects and victim object can be chosen
independently of the vulnerability. However, in order to easily
adapt DIRTYPAGE to different vulnerabilities and increase
stability, we choose padding objects that have controllable
size and can be sprayed rapidly on a desired slab cache (such
as msg_msg, iovec, user_key_payload, etc.).

Much like a UAF vulnerability that results in a dangling
reference to a freed heap object, DIRTYPAGE aims to achieve
a dangling reference to a freed memory page from a reference
to the victim object, leveraging the primitives provided by
the vulnerable object, by triggering vulnerabilities such as
Double Free, Invalid Free, UAF, and others. In Figure 1, we
illustrate the DIRTYPAGE model for exploiting a Double Free
vulnerability.

In the first step, we initiate a series of allocations to occupy
a slab S in a designated slab cache with a specific pattern of
objects: padding objects - vulnerable object - victim object
- padding objects, in a way that the vulnerable object and
the victim object reside in the same page P. To achieve this
arrangement, we spray padding objects twice - once before
the allocation of the vulnerable object and victim object, and
once after. Suppose there are N objects per slab in this cache,
we now have S populated with one vulnerable object, one
victim object, and N −2 padding objects.

To achieve a dangling reference to a freed page P, we must
ensure that S is to be discarded so that all the memory pages
it contains are returned to the page allocator. This requires the
deallocation of exactly N objects within S, while still main-
taining a reference to the victim object. We accomplish this
by initially freeing all N − 2 padding objects and then ex-
ploiting the Double Free vulnerability to free the vulnerable
object twice. This operation results in the slab allocator rec-
ognizing two separate deallocations, coupled with the N −2
deallocations of the padding objects, resulting in a total of N
deallocations within S. Importantly, the victim object remains
unaffected and its reference is preserved.
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Figure 1: Page Spray Exploit Model for Double Free.

Subsequently, S is discarded, initiating the page recycling
process, which returns P within S to the page allocator. Fol-
lowing the recycling of pages, we initiate page-spraying op-
erations from the user space that are capable of triggering
direct page allocations (they will be referred to and explained
in Section §5 as page-spraying callsites). Simultaneously, in
the kernel space, corresponding page allocations are substan-
tially sprayed, effectively reclaiming the slab pages freed in
the previous step, including P. This operation facilitates the
direct injection of malicious page-level data into the kernel.
Notably, regarding P, the maliciously crafted page-level data
overwrites the data within the victim object. For instance, if
the victim object is a pipe_buffer, the adversary gains control
over the ops field, which is a pointer to its operations function
table.

4.2 Model Variants
In different scenarios, the DIRTYPAGE technique can adapt to
various variants. When dealing with a UAF vulnerability, it is
possible to optimize the model by having the victim object and
the vulnerable object as a single object. This optimization
arises from the fact that the UAF object can be inherently
freed, eliminating the need for deceiving the allocator and
simulating the freeing of all objects. Instead, we can efficiently
free all the objects within the slab and still naturally maintain
a reference to the freed UAF object.

Moreover, straightforward privilege escalation can be
achieved (we achieved this in CVE-2022-2588 [9]). To ac-
complish this, we make adjustments to the specific data used
in the Page Spray process, focusing on the cred object. After

constructing a fake cred object in user space, during the page
reclamation step, we employ Page Spray to inject a multitude
of these fake cred objects, overwriting the real credentials in
memory pages by writing to pipe pages. Once the target cre-
dential is hijacked, the privilege escalation process succeeds.

Finally, cross-cache technique can also be integrated into
the DIRTYPAGE model as a plug-in component, depending
on the specific object being exploited or the nature of the
vulnerable object.

4.3 Model Adaptability
The model described in the preceding subsections is notewor-
thy because it relies solely on the fundamental nature of the
vulnerability itself. Whether it involves an extra free opera-
tion in the case of a Double Free or Invalid Free bug, or a
dangling reference to a freed object in the case of a UAF, the
model remains agnostic to the specific characteristics of the
vulnerable object. This key feature allows Page Spray to be
independent of the attributes of the vulnerable object, making
it an orthogonal approach to addressing vulnerabilities.

This characteristic presents a significant advantage of Page
Spray when compared to traditional methods such as heap
object spraying. The exploitability of these conventional meth-
ods is heavily influenced by the level of control that can be
exerted over the vulnerable object. In contrast, Page Spray
enables attackers to reuse the entire model with minimal mod-
ifications when targeting different vulnerabilities of the same
type. This flexibility and independence from the specific at-
tributes of the vulnerable object enhance Page Spray’s effec-
tiveness in exploiting a wide range of kernel vulnerabilities.



5 Root Cause of Page Spray
In this section, we focus on analyzing the root cause of the
Page Spray exploitation technique. Additionally, we provide
real-world case analysis to aid in understanding.

5.1 Existence of Fast Page-level Operations
Based on the high-level exploitation model shown in Figure 1,
page spraying in the Linux kernel heavily depends on the use
of page-spraying kernel callsites to achieve Step 4. The pri-
mary distinction between page-spraying callsites and regular
page-allocation functions lies in the control they offer over
data within kernel pages. Page-spraying callsites not only
allocate pages but also provide opportunities for attackers to
manipulate page-level memory spaces directly (compared to
indirect operations like SLUB subsystem), allowing them to
place malicious page-level data as desired.

After diving into the kernel codebase and analyzing con-
crete patterns that allow attackers to control page allocation
and its content, we categorize page-spraying callsites into
two main types: Copy-Write Calls and Remapping Calls. The
design of these two types of calls primarily revolve around
enhancing system performance. Specifically, during periods
of high memory demand in the system, the smaller non-page-
level buffers prove insufficient for promptly storing the sub-
stantial data volume. Consequently, the system requires the
rapid allocation of larger page-level buffers, leading to direct
page-level allocations.

As for the scenario in remapping (zero-copy) callsites. Con-
sidering the sensitivity of performance-critical functionality,
performing multiple data copies between user space and ker-
nel space incurs significant performance overhead. As a result,
the concept of zero-copy design emerged, where the kernel
dynamically allocates page-level buffers at runtime and shares
these memory regions with the user space as needed in or-
der to reduce the aforementioned overhead and increase data
handling capacity.

These designs play irreplaceable roles in ensuring the ker-
nel’s performance and reliability. Their presence is essential
for maintaining high availability and enhancing overall perfor-
mance. Consequently, it is impossible to eliminate or reduce
them as part of any mitigation strategy within the kernel. In
other words, the root cause of Page Spray cannot be elimi-
nated.

5.2 Copy-Write Call Mode
To elaborate on this call mode, we can identify two sub-types
of copy-write operations. It’s essential to note that both of
these sub-types of calls can be employed with Page Spray
techniques. However, it’s crucial to highlight that their low-
level design intricacies differ within the Linux Kernel.
Raw Page-Level Buffer. In consideration of the kernel’s
design, several subsystems incorporate a function that initially
sets up a buffer and subsequently triggers and writes to this

1 struct pipe_buffer {
2 struct page *page;
3 unsigned int offset, len;
4 const struct pipe_buf_operations *ops;
5 ...
6 };
7 static ssize_t
8 pipe_write(..., struct iov_iter *from) {
9 for (;;) {

10 if (!page) {
11 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
12 ...
13 }
14 buf->page = page;
15 copied = copy_page_from_iter(page, 0, PAGE_SIZE,

from);↪→

16 }
17 }

Listing 1: Copy-Write implementation in Pipe subsystem.

buffer as needed. An example of this can be observed in
the code snippet shown in List 1, which is part of the pipe
subsystem.

Within the pipe subsystem, a meta-control structure respon-
sible for buffer management is referred to as pipe_buffer. This
structure employs a pointer to page(s) to locate and access the
actual buffer when there’s a buffer-write request originating
from user space. In the pipe_write() function’s operations,
after simplification, it’s evident that the kernel’s intention
is to first allocate multiple pages as required. Subsequently,
these allocated pages are assigned to the page buffer pointer
inside the corresponding pipe_buffer object. Finally, the func-
tion copy_page_from_iter() is invoked to carry out the specific
copy-write operations.

It’s worth mentioning that when the pipe_buffer is gener-
ated and initialized, the page buffer is not allocated and as-
signed immediately in practice. Instead, the kernel defers the
allocation of page buffers until a buffer’s copy-write request
is received and processed. This represents a delay-allocation
strategy employed by the kernel for page buffers.
Non-linear Page-Frags Buffer. Within the networking sub-
system, the structure known as sk_buff [25] is responsible for
representing network packets. To focus solely on relevant de-
tails, we concentrate on the buffer aspects and omit unrelated
components. In this context, the design of the buffer can be
divided into two types: linear buffer and non-linear buffer.

The linear buffer is allocated at the early stage of skb cre-
ation and primarily serves to hold protocol headers and a
portion of actual data. Page allocation does not occur at this
initial stage. On the other hand, the non-linear buffer comes
into play when the linear buffer is unable to provide suffi-
cient memory space for data storage. The organization of the
non-linear buffer resembles multiple fragments, with each
fragment maintaining a specific page as the data buffer. The
kernel employs copy-write operations to transfer data from
user space to these continuous page fragments.



1 typedef struct bio_vec skb_frag_t;
2 static int packet_snd(struct socket *sock, struct

msghdr *msg, size_t len) {↪→

3 ...
4 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len,

linear, msg->msg_flags & MSG_DONTWAIT, &err);↪→

5 ...
6 err = skb_copy_datagram_from_iter(skb, offset,

&msg->msg_iter, len);↪→

7 }

Listing 2: Copy-Write implementation in Packet Address
Family.

In the relevant function packet_snd (as seen in List 2),
an skb is generated by alloc_skb_with_frags() in lower level,
which is called to allocate page fragments as buffers. Subse-
quently, the skb_copy_datagram_from_iter() function manages
the copy-write process by invoking copy_page_from_iter().
When the kernel initiates the copy-write procedure, the page
fragments are transformed into real page addresses using the
skb_frag_page() function.

5.3 Remapping Call Mode
In this subsection, we discuss another major type of Page
Spray calls, remapping calls. To demonstrate the Page Spray’s
ingenious invoking mode, we also introduce code segments
to illustrate its nature and particularized implementation in
kernel. We will discuss the copy-write and zero-copy design
in Linux Kernel, then explore in depth the model.
Mmap & Zero Copy Calls. Typically, when a user-space
application executes a mmap() call to establish a new mapping
in the virtual address space of the calling process, the kernel
primarily grants access rights to the virtual address as the
return value of this call.

When we delve into the kernel implementation, we found
the zero-copy mechanism facilitated by memory mapping
opens up opportunities for Page Spray. Where data copy op-
erations occur between a user process and kernel space, the
boundary between these two memory address spaces often
necessitates checks for operation validity and data reconstruc-
tion in the kernel space. Therefore, copy operations that tra-
verse the boundary between user processes and kernel space
can raise significant performance concerns, especially in sub-
systems that prioritize performance, such as the networking
subsystem. To address this challenge and improve overall
system performance, Linux incorporates a zero-copy design.
With zero-copy, data transfer between kernel space and user
processes reduces the additional overhead introduced by mem-
ory copies.

In this design, user-space processes explicitly set (ring)
buffer attributes, and the allocated pages are organized into
multiple page-related structures. When a process from user
space perform a mmap() call, its detailed implementation and
execution are redirected by the corresponding kernel function
tables based on the socket’s attributes. For instance, when

1 static int packet_mmap(..., struct vm_area_struct
*vma){↪→

2 ...
3 for (i = 0; i < rb->pg_vec_len; i++) {
4 struct page *page;
5 void *kaddr = rb->pg_vec[i].buffer;
6 int pg_num;
7 for (pg_num = 0; pg_num < rb->pg_vec_pages;

pg_num++) {↪→

8 page = pgv_to_page(kaddr);
9 err = vm_insert_page(vma, start, page);

10 ...
11 }
12 }
13 }

Listing 3: Example codes of mapping in packet mmap.

setting up a packet ring buffer in PF_PACKET, the mmap()

call is executed by the packet_mmap() function in the kernel
(as seen in List 3). In this implementation, the page-related
structure it introduces is page-vector, which can be used to
maintain a reference to a valid page and akin to the previously
discussed skb page-fragments. The kernel first transforms a
page-vector to a raw page reference in Line 8 3. Subsequently,
in the next line, vm_insert_page() is invoked to insert the target
page into the virtual address mapping space of the user space
process. After this insertion, the user space process gains the
right to achieve direct memory write operations to the page.
In other words, at this stage, the related user process becomes
capable of spraying data onto pages which allocated by the
kernel space.

The zero-copy mapping mechanism leads to a page of mem-
ory explicitly shared between kernel space and user space, al-
lowing bad actors to overcome previous limitations. What sets
zero-copy mapping apart from other methods is that it inher-
ently allocates pages for data (ring) buffers and makes them
accessible to user space. In this scenario, user space gains
flexible control over memory allocation and writing behaviors.
For example, user space can explicitly call packet_set_ring()
to specify the number of pages to allocate (as shown in List 4),
where the req variable represents the ring buffer configuration
request sent from the user process.

Furthermore, zero-copy mapping introduces kernel virtual
address space overlaps between slab pages and zero-copy
pages, providing a fundamental support for Page Spray. This
means that a page discarded by the kernel heap’s slab allocator
can be reclaimed through zero-copy operations and remapped
to the memory space of the user space process.

6 Static Analysis Model
To understand the extent to which Page Spray impacts the
security of the kernel, it is crucial to comprehend the preva-
lence and generality of Page Spray in the Linux kernel. While
manually identifying all potential call sites is the most straight-
forward approach to consider, the intricacy of the Linux kernel



1 static struct pgv *alloc_pg_vec(struct tpacket_req
*req, int order){↪→

2 unsigned int block_nr = req->tp_block_nr;
3 pg_vec = kcalloc(block_nr, sizeof(struct pgv),

GFP_KERNEL | __GFP_NOWARN);↪→

4 for (i = 0; i < block_nr; i++) {
5 pg_vec[i].buffer = alloc_one_pg_vec_page(order);
6 ...
7 }
8 }

Listing 4: Example codes of page allocation in packet ring-
buffer setting.

codebase makes manual selection relatively impractical and
inadequate for supporting a large-scale comprehensive study.

To tackle this challenge and offer a systematic compre-
hension, we introduce our static analysis model designed to
scrutinize the Linux kernel codebase. Furthermore, leveraging
this model, we develop an automated static analyzer tool and
apply it to the kernel codebase.

In this section, we introduce our static analysis model
aimed at pinpointing the crucial page-spraying call sites
within the Linux Kernel through a combination of control-
flow analysis and data-flow analysis.

6.1 Static Analysis Methodology
Copy-Write Callsites. To identify Copy-Write page-
spraying callsites, our approach involves the analysis from
root interfaces, which we categorize into two distinct types:
allocation and copy root interfaces.

Allocation root interfaces primarily serve the purpose of
executing direct page allocation or functioning as wrapper
functions within specific subsystems to accomplish such allo-
cations. It is worth noting that, although some page allocations
occur in the kernel heap slab allocator, we do not consider
those as the qualified callsites for Page Spray. The distinction
here arises from the granularity of operations within the slab
allocator, which operates at the object-level rather than the
page-level, and in Page Spray, we consider direct page-level
allocation.

On the other hand, copy interfaces are mainly associated
with copy-write functions in the kernel. These interfaces are
capable of transferring of data from user space to the kernel’s
page buffers. Through these operations, user processes gain
the capability to manipulate data at the page level. Because
our data copy are based on the "benign" operations, such as
copying a data to kernel space networking buffer and so on, it
natively will not trigger any defense or mitigation like SMAP
which is designed for enhancing islation between user space
and kernel space.

To systematically identify callsites, we build a global-level
callgraph in the kernel to capture inter-function control flow
information. Each function call is represented as a node within
this graph. We initiate our search by tracing backward from
two root interface call nodes: one pertaining to allocation and

skb = packet_alloc_skb(sk…,);

skb_copy_datagram_from_iter(skb,…);

[InterfaceNode]

[CrossNode]

sock_alloc_send_pskb(…)

[TerminalNode]

packet_mmap(file, sock,vma)

Struct 
packet_ops.mmap=packet

_mmap;

vm_insert_page(vma,adr,pages…)alloc_pages(gfp,order)

Figure 2: Page Spray Invocation Model. Each node indicates a
specific function in the overall CallGraph. skb is the structure
which is binded with page frags.

the other to copy operations. As we traceback paths from
root interfaces, we identify nodes where the paths intersect.
These nodes are marked as potential callsites at the control
flow level.

Then, to enhance the accuracy, we employ fine-grained
data flow analysis. This entails conducting data flow analysis
inside individual nodes. Our data flow analysis is guided by
two specific instruction points. We ensure that the allocation
instruction precedes the copy-write operation. Subsequently,
we proceed to a search process from the allocation points to
the copy-write points, with the aim of ascertaining whether
the corresponding data transmission occurs between them.
Specifically, if the allocation operation allocates pages and
assigns them to a certain position in a control structure, and
the subsequently corresponding copy-write operation writes
data to that same position of the structure, we recognize this
as a valid callsite.
Remapping Callsites. On the contrary, when examining
zero-copy calls, these are tightly linked to the function ta-
bles of specific subsystems, such as the packet_ops, in vari-
ous protocol families. Therefore, in our analysis, we start by
traversing the structures of these function tables at an early
stage and gather pertinent information regarding function
pointer members. Of particular interest is the mmap-related
function pointer, which directs the mmap-execution-flow to
the actual implementation in the kernel. Much like in our pre-
vious analysis, zero-copy mmap calls also contain memory
remapping root interfaces. For instance, vm_insert_page() is
responsible for inserting a single page into a user’s virtual
memory area, and remap_pfn_range() facilitates the remapping
of kernel memory for sharing with user space processes.

In the zero-copy mapping model analysis, these root in-
terfaces are also treated as nodes at the control flow level.
During our analysis, we trace back from these nodes. When
we encounter a specific *_mmap function that aligns with the



mmap function within a function pointer found in our col-
lected function tables, we preliminarily consider it as a zero-
copy remapping callsite. Furthermore, at the data flow level,
we apply forward dataflow analysis and backward dataflow
analysis. We backtrack from the allocation root interfaces to
ascertain whether the same control structure is employed both
in allocation and remapping. If we identify a structure that
connects allocation with remapping, we recognize the callsite
as a valid zero-copy remapping type page-spraying callsite.

Optimization. As illustrated in Figure 2, the interface nodes
represent the starting points for one-time search. While there
are some raw nodes positioned beneath these interface nodes,
we have opted to exclude these nodes to simplify the back-
trace process. Like the pruning operation, the terminal nodes
point to functions that we’ve encountered during the analysis
but are not intended to be traced back to their higher parent
function nodes. The introduction of this is necessary for sev-
eral reasons. Firstly, in the slab allocator, there are functions
that rely on the page allocator but do not directly trigger page
allocation, like kmalloc(). Although indirect allocation may
occur when a new slab allocation is executed, it does not align
with the scenarios capable of triggering Page Spray. Secondly,
the backtrace operations may have reached their maximum
limit, so they terminate as we expect. Lastly, there are sections
of code within the kernel that are exclusively available on spe-
cific architectures or hardware. In such cases, we dissociate
the results from these code segments to ensure accuracy and
relevance.

It is crucial to note that during the process of remapping in-
vocation, there might be instances where there is no "Crossing
Node." This occurs because the remapping mmap() function
often follows a separate execution path from allocation. To fit
this situation, we set the related "Terminal Node" for it. For
example, when a mmap() call is made in the user space for a
packet page buffer, it is typically executed by packet_mmap()

↪→ in kernel. Therefore, packet_mmap() is considered a "Ter-
minal Node". If the analyzer encounters this point during
backtrace, it immediately stops and proceeds to analyze al-
location interfaces to determine if the data flow between al-
location and remapping aligns appropriately. As for alloca-
tion, we backtrace from the direct page allocation points, like
__get_free_page(). Considering the multiple reference and the
depth of invocation chains for these lower direct page allo-
cation calls, when we find the tracing enter the related sub-
system which is the same as previous mmap invocation, we
will reset the root interface into the function in corresponding
subsystem, and searching the control structure in this given
subsystem. If the same control structure is found, we will
compare with the control structure of the mmap operations.

Design and implementation. Due to the page limit, we dis-
cuss the details of our implementation in Appendix A.2.

6.2 Dynamic Test and Analysis
To ensure the effectiveness of the callsite analysis, we de-
ployed the state-of-the-art and most widely used kernel fuzzer,
Syzkaller [19]. In order to enable Syzkaller to report the cor-
responding callsites’ reachability, we insert WARN_ON(1) as the
panic function in each callsite. The Syzkaller will generate
syscall sequences to reach and trigger the callsite, once it
reaches, the kernel will experience an error by warning mes-
sages and stack dump information. In the following steps,
Syzkaller will try to reproduce the related panic then output
a minimized input. It should be emphasized that Syzkaller is
performed based on syscall templates to generate the fuzzing
input and dynamically test the kernel. For some kernel mod-
ules and logics, the templates have not yet been supported
well to fit the corresponding part by Syzkaller. In these kinds
of situation, we confirm the callsite manually with our crafted
trigger programs. During our dynamic test, manually check
only happens for tap_skb_alloc callsite.

For configuration of Syzkaller, we set 8 processes with
qemu-based instance in bare-mental machine. Every instance
we set 2 CPUs with 2G memory.

6.3 Analysis Result
As shown in Table 1, by our analyzer, we have identified 21
page-spraying callsites within the Linux kernel source code.
These results illustrate that the page-spraying callsites are
distributed across several crucial subsystems in the Linux
Kernel, including Networking, Pipe, io_uring and so on. No-
tably, the networking subsystem in Linux Kernel exhibits
a higher frequency of these page-spraying callsites. Upon
closer examination, we have observed that this frequency can
be attributed to the data transmission model employed in the
networking subsystem.

When transmitting data or messages via various protocols
in Linux Kernel, non-linear buffers may be allocated and uti-
lized for data storage. The commonly used kernel function
alloc_skb_with_frags() is responsible for allocating kernel
pages from the page allocator to store data received from user
space. Furthermore, we have identified memory remapping-
related callsites within the networking/pipe subsystem and
the io_uring subsystem. These callsites, along with their re-
spective subsystems, are designed to share memory spaces
with user space during the early stages of constructing (ring)
buffers. This approach aims to reduce the overhead associ-
ated with cross-space data copying and writing, ultimately
improving system performance, as we discussed previously.

Moreover, we conducted a dynamic analysis of each call-
site identified by the static analyzer as validation. We per-
form a Syzkaller test in kernel level for all callsites. For our
results, Syzkaller automatically triggers 20 of 21 in our call-
sites. For callsite tap_alloc_skb() which is actually inlined in
tap_get_user(), we find that Syzkaller has trouble triggering
it. After investigating the information from syzbot-assets [18]



Callsite Usability Syscall

packet_set_ring setsockopt
packet_snd sendmsg
packet_mmap mmap
rds_message_copy_from_user sendmsg
unix_dgram_sendmsg † sendmsg
unix_stream_sendmsg † sendmsg
netlink_sendmsg ✜ sendmsg
tcp_send_rcvq(inet6) sendto
tcp_send_rcvq sendto
tun_build_skb ✟ write
tun_alloc_skb ✟ write
tap_alloc_skb ✟ write
pipe_write write
fuse_do_ioctl † ioctl
io_uring_mmap mmap
array_map_mmap † mmap
ringbuf_map_mmap † mmap
aead_sendmsg sendmsg
skcipher_sendmsg sendmsg
mptcp_sendmsg sendmsg
xsk_mmap ✞ mmap

Table 1: The page-spraying callsites analysis results for Page
Spray. : represents callsites that can be used without extra
restriction. : represents callsites that are capable of exploit-
ing with limitations. † means the usability is restricted by
allocation size. ✟ indicates the requirements of device access.
✝ represents callsite requires XDP operations. ✜ means the
memory area restriction.

of Syzkaller, we learn that Syzkaller has a low coverage in
tap.c file. Due to this reason, only for this callsite, we use
our crafted program based on the testcase from Linux v6.1
selftests [32] to trigger it manually.

Beyond the current findings, our static analyzer can be uti-
lized for continuous integration. As the Linux kernel contin-
ues to evolve, incorporating new functionalities and features,
we can re-employ the analyzer to detect recently added page-
spraying callsites.

7 Effectiveness Evaluation
In this section, we will discuss the design and results of sev-
eral experiments conducted to measure the effectiveness of
the Page Spray technique in the context of various real-world
kernel vulnerabilities. To gain a comprehensive understand-
ing, we categorize "effectiveness" into two distinct attributes:
"exploitability" and "stability". The results of exploitability
evaluation are shown in Table 2, and the stability evaluation
results are in Table 3.

CVE-ID Type Object Spray Page Spray

CVE-2016-4557 UAF ✔ ✔

CVE-2016-8655 UAF ✔ ✔

CVE-2017-10661 UAF ✔ ✔

CVE-2017-11176 UAF ✔ ✔

CVE-2017-15649 UAF ✔ ✔

CVE-2018-6555 UAF ✔ ✔

CVE-2016-0728 OOB ✔ ✔

CVE-2021-22555 OOB ✔ ✔

CVE-2022-2588 DF ✔ ✔

CVE-2017-6074 DF ✔ ✔

CVE-2017-8890 DF ✔ ✔

CVE-2022-29581 † UAF ✔ ✔

CVE-2016-10150 UAF ✔ ✗

CVE-2022-20409 ★ UAF ✔ ✔

CVE-2022-2585 † UAF ✗ ✔

Table 2: Exploitability demonstrated on real-world vulnerabil-
ities. The symbol ★ represents we exploit this vulnerability
on Mobile Device. † means that the exploitation in this case
includes cross-cache.

.

7.1 Experiment Design & Methodology
We have executed a series of experiments to investigate the
practicality of employing the Page Spray technique in the
exploitation of real-world kernel vulnerabilities. These ex-
periments underscore the inherent complexity of real-world
vulnerabilities exploitation, which can be attributed to several
key factors.

Firstly, the subsystem within the kernel where vulnera-
bilities manifest can significantly influence the contexts of
the exploitation process. An effective exploitation method
should ideally be versatile enough to overcome or mitigate
the influence of these context-specific variations, with as few
adjustments as possible. Secondly, the nature of the vulnera-
ble object plays an imperative role in shaping the exploitation
strategy. Objects of different sizes and behaviors require dis-
tinct approaches to achieve successful exploitation. Lastly,
the patterns exhibited by vulnerabilities, such as Use-After-
Free, Double-Free, Invalid-Free, and Out-of-Bound, introduce
further complexity. Attackers must select appropriate exploita-
tion methods that align with these specific patterns in order
to effectively exploit the vulnerabilities.

Based on the outcomes of these experiments, the effective-
ness of Page Spray in the context of real-world vulnerabili-
ties is evaluated. Additionally, a comprehensive analysis is
conducted to evaluate how proficiently Page Spray performs
when applied to the exploitation of these vulnerabilities.

In our evaluation, we systematically assess a selection of
real-world Linux kernel CVEs, adhering to the methodology
outlined in K(H)eaps [46]. Furthermore, we introduce sev-
eral up-to-date CVEs and real-world vulnerabilities into our
assessment. Our criteria for CVE selection focus on kernel
heap data-related corruptions that align with the principles



Type CVE Slab-Cache Single-Thread Spray Multi-Process Spray Page Spray Subtypes

In IDLE State

UAF CVE-2016-4557 † Kmalloc-256 100% 100% 100% eBPF
UAF CVE-2016-8655 † Kmalloc-2048 99.4% 99.3% 100% Race
UAF CVE-2017-10661 † Kmalloc-256 41.4% 64.1% 99.8% Race
UAF CVE-2017-11176 † Kmalloc-2048 99.4% 99.8% 99.7% Normal
UAF CVE-2017-15649 † Kmalloc-4096 61.4% 99.4% 97.9% Race
UAF CVE-2018-6555 Kmalloc-96 98.9% 100% 87.7% Normal
OOB CVE-2016-0728 † Kmalloc-256 91.3% 99.8% 99.3% Race
OOB CVE-2021-22555 Kmalloc-1024 77.3% 46.0% 61.2% Normal
DF CVE-2017-8890 † Kmalloc-64 74.3% 94.6% 94.4% Normal
DF CVE-2022-2588 † Kmalloc-256 87.3% 10.6% 91.4% Normal

In BUSY State (stress-ng)

UAF CVE-2016-4557 Kmalloc-256 75.6% 97.4% 84.4% eBPF
UAF CVE-2016-8655 † Kmalloc-2048 64.3% 58.1% 61.5% Race
UAF CVE-2017-10661 † Kmalloc-256 28.6% 78.3% 98.1% Race
UAF CVE-2017-11176 Kmalloc-2048 79.8% 94.4% 63.7% Normal
UAF CVE-2017-15649 † Kmalloc-4096 38.1% 98.8% 99.2% Race
UAF CVE-2018-6555 † Kmalloc-96 92.0% 98.1% 90.7% Normal
OOB CVE-2016-0728 Kmalloc-256 40.4% 99.9% 87.3% Race
OOB CVE-2021-22555 Kmalloc-1024 71.8% 39.4% 43.4% Normal
DF CVE-2017-8890 † Kmalloc-64 18.7% 27.8% 49.0% Normal
DF CVE-2022-2588 † Kmalloc-256 50.9% 19.0% 54.0% Normal

Table 3: Exploit Stability Evaluation of Page Spray under Idle State and Busy State generated by stress-ng, compared to
Single-Thread Spray and Multi-Process Spray. The † symbols represent cases Page Spray achieves better or comparable results
as the traditional approaches.

established in K(H)eaps. These CVEs are rigorously verified
for their reproducibility within the Linux kernel and their
capacity to induce kernel crashes.

Our collection of CVEs encompasses a total of 15 real-
world Linux kernel CVEs, as presented in Table 2. Our col-
lection incorporates a set of 9 native Use-After-Free bugs, 3
Double-Free bugs, and 2 Out-Of-Bound bugs. This diverse set
of vulnerabilities includes various subtypes such as race con-
ditions, eBPF-related issues, and cross-cache attacks [33, 39].

Exploitability Evaluation. To evaluate the exploitability of
Page Spray, we adopt a straightforward approach. We create
a Page Spray proof-of-concept (PoC) for each of the CVEs
within our dataset. Subsequently, we execute these PoCs to as-
certain how many of the CVEs can be successfully exploited
using Page Spray with a reasonable success rate. In instances
where our initial PoC fails, we conduct an in-depth examina-
tion to identify the underlying reasons and try to adapt the
PoC to the specific circumstances. In cases where no modifi-
cations yield successful exploitation, we draw the conclusion
that Page Spray is incapable of exploiting that particular vul-
nerability and provide a detailed explanation for this outcome.

Stability Evaluation. Our stability evaluation experiments
involve running exploits for a subset of the CVEs that are ex-
ploitable by Page Spray from the exploitability evaluation for
a 1000 iterations under two distinct system operational states:

the idle working state and the busy working state. The idle
state represents a moderate kernel heap activity environment
on the machine. This state mirrors the conditions that one
would typically encounter on a standard local user’s machine.
Conversely, the busy state aims to simulate a more extreme
operational setting where many intensive applications and
stressors are running concurrently, providing a comprehensive
context to limit test the capability of the Page Spray technique.
We simulate this busy working state by utilizing a benchmark
program called stress-ng [40]. Due to the space limit, we
describe the detail of the environment used for evaluation in
Appendix A.1.

Under these varying working conditions, we conduct a com-
parative analysis involving several practical state-of-the-art
kernel heap exploitation techniques, including Page Spray,
Single-Thread Heap Spray, and Multi-Process Heap Spray, as
analyzed in K(H)eaps. This analysis serves to reveal the poten-
tial advantages or disadvantages of the Page Spray technique
in the context of real-world environments.

The exploits are developed by first collecting publicly
available and approved PoCs for each CVE. Then, we mod-
ify them into corresponding variants (Page Spray, Single-
Threaded/Multi-Process Heap Spray) following the method
we propose in Section 4. To ensure fairness, the only dif-
ference between each exploitation variant is the spraying
technique itself, based on the same setups. Different types of



vulnerabilities have slight differences compared to our pro-
posed method in Section 4.1, as discussed in Sections 4.2
and 4.3. A step-by-step detail of one such exploits can be
found in Section 8 and Appendix A.3.

7.2 Experiment Results
Exploitability Evaluation. The outcome of our experiment
is presented in Table 2. Page Spray demonstrated successful
exploitation in 14 out of 15 vulnerabilities within our dataset.
These successful exploits encompassed all three vulnerability
types: UAF, OOB, and Double Free. Notably, Page Spray
also effectively exploited a vulnerability on a mobile device
(CVE-2022-20409) and executed cross-cache attacks (CVE-
2022-2585, CVE-2022-29581).

Specifically, in the case of CVE-2022-2585, which is a rela-
tively recent kernel heap vulnerability, traditional object spray
method is unable to successfully exploit it due to the lack of
precise control over the entirety of a vulnerable object and in-
sufficient kernel information leakage. In contrast, Page Spray
excels in this scenario. It effectively exploits CVE-2022-2585,
and we’ll delve into this in more detail in Section 8, where
we explore how Page Spray shines in addressing recent real-
world vulnerabilities.

On the other hand, in the case where Page Spray failed, we
conducted a deep analysis to find out the root cause. In CVE-
2016-10150, the vulnerability is triggered in KVM kernel’s
module. The UAF’s allocation and free happen during a single
invocation to ioctl(). This situation introduces a challenging
race condition with a very narrow time window. This is a
corner case for Page Spray, since as demonstrated in Section 4,
the page layout manipulation and page spraying must occur
after the vulnerable object is allocated and before it is freed
to effectively exploit the vulnerability. However, the stringent
time constraints imposed by this case make it exceedingly
difficult to set up the necessary conditions for Page Spray to
be successful.
Stability Evaluation. As evident from our observations of
the experiment result in Table 3, in an idle system envi-
ronment, the Page Spray technique demonstrates remark-
able effectiveness, surpassing both the Single-Thread Heap
Spray and Multi-Process Heap Spray methods. It consistently
achieves an impressively high success rate, often approaching
100%, particularly in scenarios involving UAF vulnerabilities.
This robust performance is noteworthy because real-world ker-
nel heap exploits commonly occur on systems with moderate
workloads. For instance, when jailbreaking mobile devices,
one of the common applications of kernel exploitation, the
jailbreaker typically has complete control over the device’s
workload and can reduce it to a minimum. This level of work-
load can also be expected on a standard local user’s machine,
which is a common target by attackers for exploitation. Fur-
thermore, in attacks on busy remote servers like web servers
or cloud servers, attackers can monitor the server’s workload

and strategically time their exploits during periods of lower
activity, such as late at night.

In contrast, when operating within extremely stressed envi-
ronments, it is expected that the success rates of Page Spray,
as well as the other compared techniques, would experience
a decrease. Nevertheless, Page Spray maintains a superior
success rate in comparison to the Single-Thread Heap Spray
method, and it delivers results comparable to those achieved
with Multi-Process Heap Spray. Notably, in specific circum-
stances, Page Spray even performs on par or significantly
better than Multi-Process Heap Spray, as exemplified by CVE-
2017-10661, CVE-2017-15649, CVE-2018-6555, CVE-2017-
8890, and CVE-2022-2588. The forthcoming subsection will
delve into the conditions under which Page Spray excels and
elucidate the rationale behind its performance.

In summary, the outcomes of both evaluations illustrate
that Page Spray is a robust and effective approach that can
serve as a valuable complement to conventional object spray
methods. When used in the correct scenarios, these techniques
cover each other’s limitations, leading to a broader range of
vulnerabilities that can be exploited and ultimately enhancing
the stability of successful exploits.

7.3 Result Discussion
Root Cause of Instability. In order to explain and have a
better understanding of the evaluation results and subsequent
comparisons, it is imperative to first understand the key factor
that influences the success rate of exploitation techniques and
how they differentiate between Page Spray and conventional
object spray approach. In the context of object spraying, in
order to reclaim the vulnerable object’s slot, the object must
be in the active slab. Consequently, the exploit program has to
race against the unpredictable and random allocations coming
from the busy kernel with the goal to reclaim that specific slot
for the desired object.

In contrast, page spraying can mitigate this issue, by spray-
ing the target cache with spray objects until the current slab
is full, and another slab is allocated as the active slab, all
before freeing the vulnerable object. In this case, all the un-
predictable allocations from the kernel are directed into the
active slab, while the freed vulnerable object resides in an-
other slab, remaining untouched. This is possible because in
this technique, the goal is not to reclaim the individual object,
but rather to target the entire page for reclamation. However,
it is worth noting that the stability concern in the context of
page spraying arises during the actual spraying process itself.
The key requirement for the pages to be recycled to the allo-
cator is that all objects within the entire slab containing the
vulnerable object must be freed. Consequently, there must be
no unpredicted allocation within the same slab, as this would
impede this requirement.

This characteristic is an advantage for Page Spray under cer-
tain conditions. For instance, in the case of CVE-2017-10661,
Page Spray shows an remarkable advantage over traditional



approach, boasting a success rate of 98.1% compared to the
traditional method’s 78.3%. A similar trend is observed in
CVE-2017-8890, where Page Spray achieves a success rate
of 49.0% compared to the traditional approach’s 27.8%. We
specifically examined these cases and it became evident that
they have one important thing in common: the vulnerable
objects are freed in RCU [42]. This means that the vulnerable
objects undergo a grace period before they are returned to
the allocator. Importantly, the duration of this grace period
is not visible to the exploit program. Therefore, the common
solution is to let the process sleep for a few seconds before
attempting to reclaim the vulnerable object’s slot. As men-
tioned above, the race to reclaim this slot is the most critical
source of instability for the traditional heap spraying approach.
Therefore, the longer the process remains in the sleep state
after the object has been freed, the lower the likelihood of suc-
cessfully reclaiming it, thus explaining the low success rates
observed. Page Spray does not suffer from this problem as the
reclamation stage is not the critical source of its instability.

8 Case Study: Refurbish Intractable Exploit
In this section, we demonstrate how Page Spray make im-
provements to certain hard-to-exploit vulnerability case, and
enhance the exploitability. To achieve this, Page Spray em-
ploys two novel approaches, kernel information leakage by
new channel, and halting the CPU execution to improve ex-
ploitability. We successfully apply Page Spray into a real
world zero-day bug (CVE-2022-2585 [8]) and achieve privi-
lege escalation.
Vulnerability Background: The vulnerability in question
resides within the Posix CPU Timer Subsystems of the Linux
Kernel. It pertains to a CLOCK_THREAD_CPUTIME_ID timer, which
is utilized to measure the amount of CPU time consumed
by a thread. When the function timer_settime() is invoked,
the timer is marked as "armed." If there exists a user-defined
time interval, once that interval elapses, the timer is triggered.
To provide further context, Linux manages a linked list of
timer-associated structures, struct k_itimer, within struct

↪→ posix_cputimers. When a timer interrupt is raised, the ker-
nel checks whether a specific thread has consumed a sufficient
amount of CPU time. If the conditions are met, the timer ex-
pires and is placed into a firing linked list. Subsequently, all
timers within this firing linked list are utilized to trigger the
posix_timer_event, leading to the issuance of signals to the
program.

This UAF vulnerability manifests in scenarios where a
thread establishes a thread CPU timer and then invokes execve

↪→ (). When execve() is called, a clean-up operation is ex-
ecuted on behalf of the process, which involves freeing all
timers associated with that process. However, the crucial over-
sight lies in the failure to remove the reference to the timer
within the struct posix_cputimers. In essence, if the timer was
already armed before the execve() operation, the kernel pro-
ceeds to free the timer while still maintaining a reference to it

within the doubly linked timer list. Consequently, when the
designated time arrives, the kernel traverses the linked list,
locates the timer, adds it to the firing linked list, and attempts
to trigger the timer, thereby leading to a UAF vulnerability.
Kernel Information Leakage: In this scenario, we initiate
a timer UAF vulnerability within a process and prepare the
page vectors for subsequent Page Spray exploitation using
AF_PACKET. Following these preparations, we create a child
process directly through a fork() operation. Within the child
process, we monitor the release of the slab page, which eventu-
ally returns to the page allocator. The parent process triggers
the freeing operation. After the page is freed, we allocate and
remap the vulnerable timer page to user space. This remap-
ping is achieved through memory remapping operations, as
illustrated in Listing 3, performed by the packet_mmap(). At
this stage, the user gains access to the timer’s page; however,
it’s important to note that the kernel still maintains a reference
to this timer. Consequently, any modifications made to the
timer’s memory data will be immediately reflected in the user
space, and vice versa.

In the next step, we initiate an exit process operation.
Specifically, the "timer queue" utilized here is, in fact, an RB-
Tree rather than a traditional queue structure. During the exe-
cution of the exit operation, the kernel invokes timerqueue_del

↪→ () to remove the timer from the RBTree and label it as
a "dangling node." This marking is achieved through node->

↪→ __rb_parent_color = node (RB_CLEAR_NODE), indicating that
the operation associated with process termination adds a ker-
nel heap pointer that points back to the process’s own memory
region. Consequently, we can read the remapped memory re-
gion from user space, allowing us to easily obtain a kernel
heap address.

Finally, we release the sprayed pages back to the page
allocator and proceed to spray msg_msg objects in order to
reclaim the pages. At this stage, the kernel heap address we
previously leaked serves as the address of a msg_msg object.

To summarize the previous paragraphs, Page Spray during
exploitation introduces a novel channel for leaking kernel
information. This is achieved by remapping kernel-allocated
pages directly to user space. In essence, this means that by
sharing pages with kernel space, users can efficiently monitor
and access certain kernel data. This approach eliminates the
need to copy data from the kernel space to the user space,
thereby simplifying the exploitation process and improving
its effectiveness.
Trapping CPU Execution. After successfully leaking ker-
nel information and running on CPU0, we can trigger the
vulnerability once more and reclaim the freed pages using
Page Spray. However, it’s important to note that, at this stage,
we modify the payload used for Page Spray to trap CPU0.
This involves manipulating the k_itimer structure in the pay-
load with the following key modifications: (1) setting the
it_requeue_pending field to a large value, (2) faking the sigq

field to point to the leaked msg_msg address minus 0x20, (3)



faking the cpu_timer’s head field within the related k_itimer,
to reference the kernel heap address we previously leaked.
These modifications are made to trap the execution of CPU0,
allowing us to further control its behavior.

When the timer is triggered, we initiate a search within the
previously remapped memory region in user space, with the
objective of identifying the specific timer. This identification
is achieved by examining the firing field associated with the
relevant k_itimer. Importantly, following this identification, a
modification made to the head field results in the entrapment
of CPU0 within an infinite loop during RBTree operations.
As a consequence, we switch execution to CPU1 to carry out
the subsequent steps.

This enforced halt serves two minor yet noteworthy pur-
poses. Firstly, it affords us the necessary time to mitigate
potential locking issues by resetting the corresponding mem-
ber within the k_itimer structure. Secondly, it ensures that
the modified timer is not immediately reintroduced to the fir-
ing list, thus preventing any potential corruption of the kernel
state. Instead, the timer is scheduled to trigger after a 2-second
delay. Once these adjustments are completed, we can return
to CPU0 and resume execution. With the manipulation of
the sigq and it_requeue_pending fields, subsequent write oper-
ations effectively overwrite critical fields within the msg_msg

structure, resulting in the leakage of kernel base information.
Page Spray, as evident in this context, possesses a remark-

able capability for precise page-level control. This unique
ability empowers us to effectively suspend or trap CPU ex-
ecution, making it exploitable. Without Page Spray, at this
time, the kernel’s internal state would likely undergo corrup-
tion, making exploitation exceptionally challenging or even
unattainable.

9 Mitigation Discussion
9.1 General Principles
As we have extensively explained in Section 4, Page Spray pri-
marily involves reusing pages at the page level. These pages
are recycled back to page allocators while slabs are discarded,
and then the slab pages are reclaimed from page allocators
and overwritten through page-level write/copy operations. To
address this issue, the key is to prevent the overlap happening
between the pages used for slab objects and the pages used
for page-level data buffers. In simpler terms, the idea is to
introduce a mechanism that isolates or divides these two sets
of pages, ensuring that the same pages are not used both in
the SLUB system and for direct page allocation.

9.2 Rethinking Memory Reuse
To further clarify our discussion on mitigation approaches,
we illustrate two real-world examples. In one example, the
lightweight solution goes to use GFP flag to separate memory
allocation area, while in the other, modifying the slub system
within the Linux Kernel.

Our Lightweight Mitigation. As we discussed earlier in
Section 2.2, different GFP flags can influence the allocation
zones in the Linux Kernel. One straightforward approach
involves adjusting the GFP flags at the points where Page
Spray is invoked, directing the allocation to a different mem-
ory area that does not overlap with the previous slab memory.
Although some other GFP flags can be leveraged to achieve
the isolation, to select appropriate flags, it’s essential to under-
stand the allocation fallback mechanism. In scenarios where
the memory areas best suited for the allocation flags are un-
available for upper-level components, the fallback mechanism
is triggered to allocate in the next available zones. At the end
of this fallback sequence, the DMA region cannot further fall
back to another memory area.

Given that no specific ZONE is initially designated as a
reserved isolation area for against Page Spray, we make ad-
justments to the allocation attributes within the Page Spray
callsites in the Linux Kernel. We attach GFP_DMA to the Page
Spray allocation points in kernel, which finally reclaims pages
from DMA region, instead of general region. This redirec-
tion of allocation operations effectively separates Page Spray
allocation from the freed slub pages and eliminates the over-
lapping. It’s important to emphasize that our aim here is to
validate the feasibility of this principle, and it’s not intended
for application in a production environment.

Slab Virtual. Slab Virtual, a mitigation technique designed
by Google and currently maintained outside the Linux Source
Code Tree, addresses concerns related to object reuse and
cross-cache attacks. This approach extends prior work, such
as AUTOSLAB [29] by Grsecurity and PartitionAlloc [6]
by Chromium, by taking a more comprehensive approach.
Originally, AUTOSLAB is not enough to mitigate Page Spray,
since it only isolates objects at object level, page reuse can
still happen if the attacker chooses the same type of object for
padding objects and vulnerable object.

Conversely, Virtual-Slab operates by creating a new, dedi-
cated virtual memory region (previously an unused hole in the
address space). In this region, slab objects are allocated, isolat-
ing them from the regular memory allocation process. Addi-
tionally, adjustments are made to functions like virt_to_phys()

to ensure that the mapping between virtual and physical slab
memory becomes permanent. This step is crucial because it
prevents the possibility of evading UAF attacks in the physi-
cal address space. By combining these measures, Virtual slab
significantly reduces the potential for overlap between Page
Spray allocations and freed slab pages. However, it introduces
incompatibility (e.g. compilation and/or runtime conflicts
with common defenses such as KFENCE and KASAN), and
noticeable overhead compared to our direct mitigation. Fur-
thermore, it is important to note that as of now, Virtual slab
has not been integrated into the Linux Mainline, and there-
fore the current Linux kernel can still be exploited with Page
Spray.



Benchmark Slab-Virtual Direct-Mitigation

Sys-RAM (MB/s) 2.26% -0.43%
Sys-CPU (Events/s) -0.95% -4.08%
FFmpeg (s) -0.95% 0.11%
OpenSSL (Verify/s) 3.43% -2.72%
OpenSSL (Sign/s) 2.78% 1.18%
PHPBench (Score) 3.33% 0.40%
PyBench (ms) 11.70% -1.29%
GIMP (s) 10.19% 5.57%
PostMark (TPS) 7.67% 1.00%
Apache (Req/s) 3.80% 1.43%
Memcached(Ops/s) 10.64% 1.93%
Redis(Req/s) 3.68% -0.82%
Nginx(Req/s) -3.14% -1.62%

Geo-Mean 4.09% 0.02%

Table 4: The Overhead on Phoronix Benchmarks.

Macro-Performance Overhead. To assess the macro-
performance impact of the aforementioned patches, we imple-
mented both of them in Linux version 6.1. We conducted our
experiments on a bare-metal machine equipped with 32GB of
memory, a 200GB SSD storage drive, and a 4-core 11th Gen
Intel i7 processor running at 2.90GHz. The performance eval-
uations were executed using Phoronix-Benchmarks [36]. For
each specific benchmark case, we ran the tests five times and
calculated the average results. The outcomes of our measure-
ments are summarized in Table 4. Notably, the introduction
of Virtual SLUB seems to result in an approximate 4% macro-
overhead in these benchmarks. In contrast, the Hardened patch
introduces minimal and practically negligible performance
overhead.

10 Related Work
This paper primarily focuses on conducting a systematic study
for an exploitation technique for the Linux kernel exploitation.
In this section, we provide an overview of these related works
and highlight the distinctions between their approaches and
the scope of our paper.
Exploitability Assessment & Improvement. FUZE [44],
aims to strengthen the evaluation of kernel UAF vulnerabil-
ity exploitability and guide the manipulation of vulnerable
object, by combining kernel fuzzing along with symbolic
execution. KOOBE [2] emphasizes the automated exploit
generation (AEG) on Linux Kernel Heap Out-Of-Bound vul-
nerabilities, including a novel capability-guided technique,
to achieve more comprehensive analysis for the capability
of real-world kernel OOB vulnerabilities. These two works
are state-of-the-art in automatic generation of traditional ker-
nel heap exploits, however, they are different from our work,
which is a comprehensive study on a lesser known technique
itself. ExpRace [28] provides the insight of augmenting time-
windows to improve the success rate on race condition vul-

nerability exploitation, by performing inter-process interrupts.
PSPRAY [27] creatively proceeds to utilize a timing side-
channel attack based technique, increasing the success prob-
ability of exploitation. Xu et al. [45] conducts a systematic
study on how to exploit use-after-free vulnerabilities in Linux
kernel based on the difficulties that mainly come from the
uncertainty of the kernel memory layout. Target on kernel
vulnerable object, ELOISE [4] clarifies the exploitability of
object with adjustable size, and how it facilitates the kernel
vulnerability exploiation. SLAKE [5] benefits the community
through constructing a kernel object database for heap-based
vulnerabilities, and demonstrates its capability of memory
layout manipulation. KEPLER [43] points out the communi-
cation between kernel space and user space can be used for
kernel stack ROP, by stack canary leakage and payload injec-
tion. KHEAPS [46] retrieves several traditional heap-based
exploitation techniques, and builds combination-exploits from
them to comprehensively measure the difference of exploita-
tion stability. We consider KHEAPS [46] as the most related
state-of-the-art work currently, and had a systematic compari-
son with it in Section 7.

Exploitation Approaches & Techniques. ret2usr [24] men-
tions the importance of isolation between the user space and
kernel space, to circumvent the inadequate mitigation, kGuard
is introduced as a insight to counter it. ret2dir [23], making
a constructive move, elaborates to us how implicit memory
sharing can be maliciously leveraged to compromise the iso-
lation technique. DirtyCred [30] proposes a new and general
exploitation method. They concentrate on launching attacks
by Linux Kernel’s privileged object which can be artfully
used to replace a vulnerable object and fulfill the privilege
escalation. Reshetova et al. [38] retrieves the kernel eBPF
JIT Spray exploitation. While they develop two different JIT
Spray attack approaches by eBPF subsystem, and prove that
the existing measures implemented in the upstream kernel are
not enough to stop JIT Spray attack. He et al. [20] involves
malicious eBPF program in kernel space to break container
boundary, through hijacking the user space process which
has been granted to high privilege. Kirzner et al. [26] dwells
on the speculative type confusion vulnerabilities in Linux
Kernel eBPF subsystem, and conducts a study on existing
general mitigations, including system-level, compiler-level,
and hardware level.

In essence, our work stands apart from the aforementioned
studies. While those studies focus on kernel heap-based ex-
ploitation or side-channel attacks, our work advances further
by concentrating on page-level control. To the best of our
knowledge, although page-level spraying technique is not a
novel exploitation method, our work is the first to systemat-
ically investigate and examine it. Through real-world case
studies, we aim to showcase the potential and effectiveness
of this approach.



11 Conclusion
In conclusion, our systematic study reveals that Page Spray
as a page-level exploitation method complements existing
techniques in the field. Page Spray offers a viable alterna-
tive with comparable even superior exploitability and stability
in real-world scenarios. Notably, in terms of compatibility,
Page Spray exhibits greater versatility, serving as an easily
adaptable method during exploitation. The general model of
Page Spray, DIRTYPAGE, demonstrates compatibility with
multiple variants, underscoring its flexibility. Our investiga-
tion into the root causes of Page Spray has revealed its close
association with certain mechanisms in the Linux Kernel’s
design. Addressing these root causes and mitigating Page
Spray should be a priority for future developments. This may
involve introducing enhanced memory isolation designs at
the page level to enhance security measures. In essence, Page
Spray emerges as a promising and powerful addition to Linux
kernel exploitation techniques, offering a unique set of advan-
tages. However, its potential risks and implications should not
be underestimated, and proactive measures are warranted to
safeguard against Page Spray attacks in kernel security.
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A Appendix

A.1 Detail of Experiment Setup
Environment used for evaluation. We run the experiments
on a PC equipped with 12th Gen Intel Core i7-12700 @
4.8GHz (20 cores in total) and 32GB memory, running Ubuntu
22.04 LTS. For each vulnerability, we re introduce it into
v4.15 Linux kernel, compile the corresponding kernel and
disk image and run the system in QEMU virtual machine
(VM). The VM is configured with 2 CPUs and 2GB RAM.
VM vs. bare-metal machine. Admitted that the success rate
of each exploit we obtain from VMs may be different from
that on bare-metal machines, we argue that the relative differ-
ence of stability between different techniques and the change
of success rate (e.g., improvement or degradation) is consis-
tent. Therefore, by observing the results from VMs, we can
safely draw conclusions.
Busy environment simulation. For the busy setting created
by stress-ng, it enables a high degree of control over the type
and quantity of stressors to run. In our specific experiment, we
opted to engage two stressors for each of the following stres-
sor types, including CPU, sock, shm, and timerfd. The CPU
stressors consistently maintain CPU usage close to 100%.
Concurrently, the other stressors target kmalloc cache usage,
affecting distinct kmalloc cache sizes. For instance, sock stres-
sors allocate a considerable number of skbuff structs, thereby
stressing kmalloc-2048. Similarly, the shm stressors allocate
shminfo structs, pressuring kmalloc-64. Timerfd stressors cre-
ate timerfd structs, focusing on kmalloc-256, while additional
kmalloc caches also undergo stress from other structures gen-
erated by these stressors.

A.2 Design & Implementation
Preparation. We implemented our analyzer based on LLVM.
The analysis tool takes kernel bitcode as input. To avoid
the bitcode from being optimized and lose critical dataflow
information, we used a customized clang to generate bitcode
before any code optimization is invoked. The first thing we
perform in early stage is to scan every modules and build the
global context, in this phase, we collect related global level
object, structs, and functions information. Specifically, when
we found certain member in a data structure, we go through
each field of it, and check if it is a related subsystem’s mmap
function, we record and insert into a mmap-function-list. We
also build the invocation information in this phase, which
maintains a global level call graph.
Cross Analysis. As we mentioned in Copy-Write call model
in Section 5.2. A copy-write callsite is constructed with an
allocation and a copy. Due to this, we perform a cross tracking
from the allocation root interfaces and copy root interfaces.
This process works based on the previous collected invoca-
tion information. Then, two invocation chains are built for the
Copy-Write callsite. After we idnetify the chains, we analyze

whether there are any intersections between these two call
chains. Assume no intersections are found, we exclude the
case and mark as invalid for copy-write type page spray. If
an intersection is found we mark as potential copy-write call-
site. For those potential callsites, we apply the corresponding
dataflow analysis to them. The intention of dataflow analysis
at this time is to check if they two chains can be traced back
to the same control structure. In two chains’ intersection func-
tion, we apply a forward analysis to check the control struct
of the presence spot in intersection function(the instruction
in the intersection function for allocation) is able to reach the
corresponding position in the instruction function for data
copy.
Remapping Analysis. When it comes to analyze remapping
callsites, it is worth to emphasize that the biggest difference
compared to copy-write callsites is that the allocation chains
and remapping chains probably don’t have an intersection,
which require more detailed dataflow analysis. First, we also
build invocation chain for remapping(mmap) from root in-
terfaces. In the following step, we search from the lowest
level page allocation function with a BFS queue, to find if a
potential page allocation can be invoked in the corresponding
remapping’s subsystem. Once we successfully find an upper
root interface in subsystem, we mark it as potential allocation
root interface for previous remapping chain. After that, we
perform backward dataflow analysis to remapping point, the
goal of it is to find a potential control structure for remap-
ping behaviors in related subsystem. Correspondingly, to find
out the control structure for allocation, we execute forward
dataflow analysis. By integrating the results from the previous
dataflow analysis. We are able to have a allocation control
structure and remapping control structure. At last, we apply
a nest-analysis for two structure to figure out whether one of
the control structures is a childfield of another control struc-
ture. We confirm as valid remapping point when they have
the same control structure in the same subsystem, or the two
control structures have a parent-child relationship in the same
subsystem.
Technical Discussion. By using analyzer, we identify 21
callsites for page spray based on our invocation model. We
compare these callsites with those randomly sampled and
manually confirmed, and find our manually audited callsites
are a subset of those pinpointed by analyzer. We understand
this discovery cannot directly conclude zero false negatives
because the kernel’s scale limits our ability to manually audit
all potential callsites. However, it implies the false negatives
of analyzer are minimal under the potential callsites of our
invocation model. To provide more systematic understanding,
we need to calrify that if there are some other callsites out
of our current callsite model, it could also lead to extra false
negatives. On the other hand, for false positive, we perform
dynamic test to verify and trigger them by Syzkaller in Sec-
tion 6.2 , and illustrate some of them have related limitation
in Table 1.



A.3 A basic step-by-step Page Spray exploit
In this Appendix Section, we will demonstrate a detailed
step-by-step exploit for one of the CVEs that we used in our
evaluation as an example for a generic Page Spray exploit
against a UAF vulnerability. The PoCs for other CVEs follow
the exact principles that we explain in this section, albeit for a
vulnerability in a different subsystem. The CVE we choose to
demonstrate is CVE-2018-6555, which is a UAF vulnerability
in the IrDA subsystem of the Linux kernel. We will describe
in details the steps that are needed to achieve the kernel heap
layout similar to the one introduced in Section 4. However,
the internals of the IrDA subsystem are out of the scope of
this paper and will not be explained in details.
The vulnerability. The irda_setsockopt function in net/irda

↪→ /af_irda.c and later in drivers/staging/irda/net/af_irda.

↪→ c in the Linux kernel before 4.17 allows local users to
cause a UAF on the ias_object object. In the public PoC
that we collected, this UAF is triggered by first creating 3
IrDA sockets using socket(AF_IRDA, SOCK_STREAM, 0) and bind
them using the function irda_bind. Subsequently, calling the
function irda_set_ias(fd, "\x00") on 2 of the 3 sockets will
corrupt the ias_object queue and later trigger a UAF when
closing the 3 sockets. Finally, creating and binding a 4th
socket will overwrite the target pointer, and calling setsockopt

with the right arguments will execute the function pointer that
has been overwritten.
Initial setup. Before setting up the kernel heap for Page
Spray and for triggering the vulnerability, we utilized some
commonly used technique to make the exploit more stable.
Firstly, we pin the process to a specific CPU, so that all our
objects will be allocated from a single CPU. This is a require-
ment for a slab to be discarded after all objects inside it are
freed. Secondly, we defragment the heap by allocating many
padding objects, in this case, we chose the padding objects to
be the msg_msg objects. This step is not always necessary, but
it helps against very busy environments. Thirdly, we prepare
beforehand the page spraying callsite that we will use to re-
claim the vulnerable page. This callsite is chosen amongst the
callsites that we found in Section 6.3. In most of our PoCs,
we choose the pipe_write callsite for generality and ease of
implementation, therefore, in this step, we prepare multiple
pipe objects that we can later write to, in order to spray page
allocations.
Page Spray setup. Since this is a UAF vulnerability, our
vulnerable object and victim object can be the same object,
which in this case is the ias_object. As mentioned above, we
choose our padding objects to be msg_msg. Since ias_object

resides in kmalloc-96, we can spray msg_msg objects of size 48
(to account for the extra 48-byte header of msg_msg objects).
With the Page Spray objects in mind, these are the steps to
create a kernel heap layout similar to the one we introduced
in Section 4 for CVE-2018-6555:

1. Spraying our first set of msg_msg padding objects.

2. Creating and binding 3 IrDA sockets using socket(AF_IRDA

↪→ , SOCK_STREAM, 0) and irda_bind.
3. Reinserting the middle ias_object and corrupting the

queue by calling the function irda_set_ias(fd, "\x00") on
2 of the 3 sockets.

4. Spraying our second set of msg_msg padding objects. At
this point, we have achieved a vulnerable ias_object in the
middle of 2 sets of msg_msg padding objects.

5. Closing all 3 sockets to trigger a free on the vulnerable
ias_object.

6. Freeing all 2 sets of msg_msg padding objects. At this point,
the slab containing the vulnerable ias_object will be dis-
carded.

Page Reclaim. To reclaim the page containing the vulnera-
ble/victim object, we simply write to the pipes that we have
prepared in the initial setup step. The content of the data
that we use to write will be an array of 8-byte values that
are all equal to 0xffffffffdeadbeef. This way, we can recog-
nize a successful Page Spray exploit be parsing the crash
report, i.e. a successful exploit will crash at RIP equals to
0xffffffffdeadbeef.
Trigger UAF. After corrupting the victim ias_object, we can
execute one of if its function pointer by creating and binding a
4th IrDA socket, and calling setsockopt. The corrupted pointer
will be executed and the kernel will crash at RIP equals to
0xffffffffdeadbeef, resulting in a successful Page Spray ex-
ploit and hijack the kernel’s execution flow.
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