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ABSTRACT help of FlakJack, we found 28 new vulnerabilities in projects that

The security landscape of software systems has witnessed consid-
erable advancements through dynamic testing methodologies, es-
pecially fuzzing. Traditionally, fuzzing involves a sequential, cyclic
process where software is tested to identify crashes. These crashes
are then triaged and patched, leading to subsequent cycles that
uncover further vulnerabilities. While effective, this method is not
efficient as each cycle potentially reveals new issues previously
obscured by earlier crashes, thus resulting in vulnerabilities being
discovered sequentially.

In this paper, we present a solution to identify occluded future
vulnerabilities — vulnerabilities that are hard or impossible to trig-
ger due to current vulnerabilities occluding the triggering path. We
introduce robust fuzzing, a novel technique that enables fuzzers
probe beyond the immediate crash location and uncover new vul-
nerabilities or variants of known ones. We implemented robust
fuzzing in FlakJack, a pioneering fuzzing add-on that leverages
binary patching to proactively identify occluded future vulnerabili-
ties hidden behind current crashes. By enabling fuzzers to bypass
immediate crash points and delve deeper into the software, FlakJack
not only accelerates the vulnerability discovery process but also
significantly enhances the efficacy of software testing. With the
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have been extensively tested through the OSS-Fuzz project. This
approach promises a transformative shift in how vulnerabilities
are identified and managed, aiming to shorten the time span of
vulnerability discovery over the long term.
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1 INTRODUCTION

The detection of vulnerabilities, once the domain of manual code
auditing by expert human practitioners, has become increasingly
automated over the years. This automation has been greatly pow-
ered by the rise of fuzzing, a stochastic dynamic analysis that has
become a premier bug-finding method in the last decade. In this
process, developers and security practitioners fuzz a target program,
identify crashes, triage these incidents, and patch the associated
vulnerabilities. Typically, fuzzing and identifying crashes are auto-
mated, while triaging and patching are manual. After each patch, a
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Figure 1: The pipeline of vulnerability discovery for the cur-
rent process and that with robust fuzzing. The first row shows
the current process, and the second row shows the discovery
with robust fuzzing. Robust fuzzing speeds up the discovery
of a future occluded vulnerability by skipping the wait of
the occluding vulnerability’s manual triage and patching.

new software version is released (or git commit committed), initiat-
ing another cycle of discovery, triage, and patching.

While this cycle works well in rapidly uncovering large numbers
of vulnerabilities, fuzzing practitioners have noted the existence
of “Fuzz Blocker” crashes: crashes that impede fuzzer’s ability to
execute code being occluded (like a cloud) by the bug [10]. Since
fuzzing is a dynamic analysis and must trigger bugs to reason about
them, Fuzz Blockers serialize the vulnerability discovery process
— until these crashes are fixed, vulnerabilities occluded by them
cannot be found. Further, the patch for the underlying bug must be
implemented by expert human practitioners, rendering this cycle
inefficient.

As an example, consider the infamous Stagefright vulnerabilities,
a family of critical vulnerabilities that impacted an estimated 950
million Android devices running Android version 2.2 (“Froyo”)
through 5.11 (“Lollipop”) and allowed attackers to perform arbitrary
privileged execution simply by sending an MMS message with no
end-user action [7]. This vulnerability remained undetected for four
years after its introduction and was deeply embedded “in the heart
of Android” [15]. It was not until all the superficial crashes were
resolved that the core Stagefright bug was uncovered, resulting
in more than ten CVEs and over twenty iterative and incomplete
fixes, requiring three weeks of effort from a team of professional
analysts [14].

In this paper, we fuzz into the future. Our goal is to proactively
identify occluded future vulnerabilities, even when they are difficult
to reach or completely occluded by latent bugs (e.g., binutils Issue
17531 [2] and Issue 20439 [3], which we will discuss in detail in
Section 2). We do this by automating patching to save time spent
waiting for occluding bugs to be fixed before occluded bugs can be
found and thereby enhancing the overall effectiveness and speed
of vulnerability discovery, as demonstrated in Figure 1.

Automatically patching bugs is difficult: the correctness of soft-
ware patches depends on the semantics of the surrounding code and
the specification of the program as a whole: e.g., a buffer overflow
might be patched by increasing the buffer size, reducing the number
of bytes accepted as input, fixing the size calculation, changing the
buffer offset, or any number of ways depending on the specifics
of the code. As a result, automated patching tools struggle to find
the “correct” approach. However, previous work has suggested that
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even semantically invalid modifications to software can yield useful
vulnerability analysis results [38].

Inspired by this, we realized that an entirely accurate patch for a
crash is not always necessary: since many occluded future vulnera-
bilities do not depend on those previously discovered, a minimal
patch that merely prevents the occluding crash from blocking fur-
ther execution can be sufficient. Based on this insight, we developed
a novel, vulnerability-tailored technique, robust fuzzing, which can
be implemented in any fuzzing tool. Robust fuzzing allows fuzzers
probe beyond the immediate crash location for common types of
crashing bugs to uncover new vulnerabilities or variants of known
ones, thus providing a more comprehensive understanding of the
underlying issues.

To demonstrate robust fuzzing, we implemented it into the Flak-
Jack prototype, built on AFL++. FlakJack is a dynamic binary patch-
ing technique that analyzes a crash and synthesizes a minimal patch
to prevent the crash in future fuzzing attempts, and does so entirely
without human assistance. FlakJack effectively synthesizes versions
of a program that approximate future versions with valid fixes for
any crashes discovered. By fuzzing the resulting binary, occluded
future vulnerabilities can be found that would previously have been
discovered only after the manual implementation of an accurate fix
for the occluding crash.

Automatically repeating the fuzz—crash—patch cycle several times
leads to discovering vulnerabilities much faster than traditional
manual patching. As a result, multiple vulnerabilities can be fixed si-
multaneously, dramatically reducing the amount of time and effort
required to test and release security fixes.

In our evaluation, we measured the effectiveness of FlakJack in
expediting the discovery of occluded future vulnerabilities com-
pared to a traditional fuzzer by testing FlakJack and AFL++ on old
versions of 6 programs and comparing their discovery of occluded
future vulnerabilities. FlakJack found 92 occluded future vulnerabil-
ities while AFL++ found 24, an improvement of 3.8x that represents
a cumulative vulnerability lifetime reduction (e.g., the sum of the
release gap between the version we tested and the version in which
the bug was fixed in real life) of over 37 years, at the cost of 3
false positive detections. We also applied FlakJack to up-to-date
programs included in Google’s OSS-Fuzz fuzzing suite [41], which
helpfully marks certain unfixed bugs as Fuzz Blockers if it detects
that they are being frequently triggered by the fuzzer. Starting
from these blockers, FlakJack discovered 28 previously-unknown
occluded vulnerabilities, as confirmed by a final manual triage. This
shows that FlakJack is able to effectively find occluded future vul-
nerabilities that had gone undetected in projects that have been
extensively tested by an industrial-scale fuzzer.

Contributions. In summary, we make the following contributions:

(1) We propose a novel fuzz-into-the-future approach that can
be applied to any fuzzer, called robust fuzzing, that uses
dynamic patching to enable fuzzers to bypass crashes and
discover occluded future vulnerabilities beyond the crash
location.

(2) We implement robust fuzzing, enhancing AFL++ into a proto-
type called FlakJack, a fuzzer particularly suited for occluded
future vulnerability discovery.
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static int display_debug_lines_raw (...){

if (op_code >= linfo.li_opcode_base)
{
op_code -= linfo.li_opcode_base;
// ID 17531, DIVIDE-BY-ZERO
uladv = (op_code / linfo.li_line_range);
state_machine_regs.address += uladv;

}

else

Listing 1: Binutils Vulnerability ID 17531 in function
display_lines_raw(). A divide-by-zero vulnerability occurs
in line 7.

(3) We demonstrate FlakJack’s capability to discover occluded fu-
ture vulnerabilities present in multiple real-world programs,
finding over 37 years of bugs in old versions of software and
28 previously-unknown “future” vulnerabilities in up-to-date
programs.

To foster open science, we have released the source code of the
prototype at https://github.com/sefcom/flakjack.

2 MOTIVATION AND BACKGROUND

In this section, we introduce the concept of occluded future vulner-
abilities. We will start with a motivating example, followed by the
definition and related terms. We will then present the prevalence
of occluded future vulnerabilities, and finally we will present the
other related work and discuss the relationship between them and
the fuzzing-the-future problem.

2.1 Motivating Example

As a motivating example, we present two binutils vulnerabilities:
ID 17531 and ID 20439. Vulnerability ID 17531 is a divide-by-zero
vulnerability, where variable 1info.1i_line_range can be set to 0
at line 7 in function display_debug_lines_raw, as shown in List-
ing 1. This vulnerability will be triggered when the debug informa-
tion in the binary is corrupted, resulting in a partial .debug_line.
section being encountered without a prior full .debug.1line sec-
tion [1].

Vulnerability ID 20439 contains an overflow vulnerability oc-
curring at line 8 in function display_debug_lines_decoded as
shown in Listing 2. When a malformed debug information is fed
into the program, variable state_machine_regs.file will be set
to an invalid value. When the variable is used as a part of index
expression for array file_table at line 8, a deference error will be
triggered and thus the program crashes with segmentation fault.

Vulnerability 17531 occludes Vulnerability 20439 because 17531’s
vulnerable function display_debug_lines_raw() is executed be-
fore 20439’s display_debug_lines_decoded(). As shown in List-
ing 3, both functions are under function display_debug_lines().
Therefore, in order to trigger vulnerability 20439, the condition at
line 12 must not be satisfied, otherwise vulnerability 17531 will be
triggered and the program will stop. Thus, there is less chance that
a fuzzer can discover Vulnerability 20439.
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static int display_debug_lines_decoded (...){
if ((is_special_opcode) ||

(op_code == DW_LNE_end_sequence) ||
(op_code == DW_LNS_copy))

const unsigned int MAX_FILENAME_LENGTH = 35;

1

2

3

4

5 {
6

7 // ID 20439, OVERFLOW
8

9

char xfileName = file_table[state_machine_regs.file - 1].name;
char *newFileName = NULL;

10 size_t fileNameLength = strlen (fileName);

11

12 3

13}

Listing 2: Binutils Vulnerability ID 20439 in function
display_debug_lines_decoded(). Aninvalid index computed
from malformed debug section information causes a segmen-
tation fault at line 8.

1 static int

2 display_debug_lines (struct dwarf_section x*section,
3 void *file ATTRIBUTE_UNUSED) {
4 unsigned char *data = section->start;

5 unsigned char *end = data + section->size;

6 int retValRaw = 1;

7 int retValDecoded = 1;

8

9 if (do_debug_lines == 0)

10 do_debug_lines |= FLAG_DEBUG_LINES_RAW;

11

12 if (do_debug_lines & FLAG_DEBUG_LINES_RAW)

13 // The function containing Vulnerability 17531

14 retValRaw = display_debug_lines_raw (section, data, end);

16 if (do_debug_lines & FLAG_DEBUG_LINES_DECODED)
17 // The function containing Vulnerability 20439
18 retValDecoded = display_debug_lines_decoded (section, data, end);

20 if (retValRaw || retValDecoded)

21 return 0;
22

23 return 1;
24 3}

Listing 3: Function display_debug_lines() in Binutils. Func-
tion display_debug_lines_decoded() can be executed after
function display_debug_lines_raw().

In reality, Vulnerability 20439 was not discovered until binutils
2.28 was released, which was 2 years after Vulnerability 17531 was
discovered. However, we found that Vulnerability 20439 has already
existed since binutils 2.21, which is 6 years before the discovery. As
we applied fuzzing on binutils 2.21, we observed that the state-of-
the-art fuzzers such as AFL++ were unable to detect vulnerability
20439. Our paper’s goal is to find vulnerabilities like Vulnerability
20439, the occluded future vulnerabilities partially or completely
occluded by another vulnerability in a target program.

2.2 Terms and Definition

As illustrated by the motivation example, in this paper, we define
occluded future vulnerabilities as a class of vulnerabilities that are
more likely to be found in the future than the present, because of
another vulnerability/crash taking place on some or all paths that
trigger the vulnerability. More formally,


https://github.com/sefcom/flakjack

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Definition 2.1 (Occluded future vulnerabilities). A vulnerability
V, at line Ly is an occluded future vulnerability if there exists a
vulnerability V; at line Ly such that L; is executed before L, and
thus V; prevents V; from being discovered.

Depending on the context, we also call future vulnerabilities
as occluded vulnerabilities and use the two terms interchangeably.
We name the vulnerabilities completely or partially blocking the
discovery of the occluded future vulnerabilities occluding vulnera-
bilities. Occluded vulnerabilities have control flow dependency with
the occluding vulnerabilities — either the occluding vulnerability
dominates the basic block associated with the occluded vulnera-
bilities (full occlusion), or the occluding vulnerability exists in an
earlier preceding basic block on some of the paths that trigger the
occluded vulnerability (partial occlusion).

Note that occluded future vulnerabilities are not non-existent
vulnerabilities, e.g., an indexed buffer element al index] that might
be overflowed only if the value of index is changed through future
code. In our definition, occluded future vulnerabilities already exist
in the program.

2.3 Prevalence of Occluded Future
Vulnerabilities

A critical thinker might question the prevalence of occluded fu-
ture vulnerabilities: are there indeed so many that we should be
concerned? To answer this question, we conducted an experiment
to estimate the occurrence of crash occlusion in binutils 2.21.1
Note that these statistics are just for the purpose of demonstra-
tion and cannot precisely measure the number of occluded future
vulnerabilities. A precise measurement would require addressing
several research challenges, which we consider as separate and
future work.

We first collected crashes for the most popularly fuzzed binutils
targets using AFL++. We then deduplicated crashes using a hash
computed from the backtrace at the time of crash. For every unique
crash, we checked if fixing this crash will result in finding another
different vulnerability. Specifically, we searched for the crash fixing
commit; if found, we ran the crashing input with the patched pro-
gram and checked if another crash is triggered and if the new crash
is associated with a different vulnerability. If the check is passed,
we consider the original crash as an occluding crash, i.e., a crash
that will reveal another vulnerability if fixed.

Based on the measurement, we identified 345 unique crashes,
among which 93 crashes are occluding crashes (Figure 2). This
number indicates that, more than 25% of the identified crashes
are occluding at least one occluded future vulnerability, not to
mention the cases such as StageFright, which was occluded by 30+
crashes sequentially. These statistics imply that occluded future
vulnerabilities can be quite prevalent in practice.

2.4 Related Work

Fuzzing for Vulnerability Discovery. Fuzzing [6, 8, 9, 16, 22, 23,
34, 40, 45] is a dynamic vulnerability discovery approach widely

1We selected an older version to ensure a sufficient number of total crashes, thereby
making the results statistically representative.
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Non-Occluding Crashes

Occluding Crashes

Figure 2: Occluding Crash Statistics in Binutils 2.21

used in real-world programs. The goal of fuzzing is to generate con-
crete inputs that trigger (enforceable) security violations through
program execution.

Although both FlakJack and existing fuzzers are to find vulnera-
bilities, they share different focuses on the discovered vulnerabil-
ities. While traditional fuzzers focus on finding current vulnera-
bilities, FlakJack aims to find occluded future vulnerabilities that
are hard or impossible to trigger due to the existence of current
vulnerabilities. FlakJack is built upon existing fuzzers, and the two
fuzzing variants complement each other.

Additionally, AFL’s crash exploration and Evocatio [27] are or-
thogonal to our work, as they aim to find more execution vari-
ants that trigger the same vulnerability, whereas FlakJack aims to
discover different vulnerabilities. However, they can complement
FlakJack by helping identify more cases to patch.

Vulnerability Prediction. Another stream of research that is possi-
bly close to occluded future vulnerability discovery is vulnerability
prediction [19, 28, 35, 46], which is to predict the introduction of
vulnerabilities due to future code change. As we clarified in Sec-
tion 2.2, occluded future vulnerabilities already exist in the program,
which is different from the potential vulnerabilities considered in
vulnerability prediction. Therefore, these two fields of research are
orthogonal due to different research objectives.

Binary Patching and Crash Prevention. There has been a stream
of research aimed at automatically patching binary programs [17,
31-33, 42, 47]. While the state of the art in binary patching shows
promising advancements, existing techniques fall short of our goals
due to due to incompatibility (e.g., needs as inputs vulnerability
type [49] and/or location [20]), lack of generality (e.g., memory leaks
only [43]), or high cost (e.g., requiring concolic execution [33, 48]).
Moreover, automatic binary patching techniques are not sufficiently
rapid to be directly applied to the “fuzz the future” problem, as
generating a patch typically consumes excessive time and resources.
Overall, current correctness-focused patching techniques overkill
the robust fuzzing problem.

Existing crash prevention work such as X-Force [37] shares with
robust fuzzing the goal of preventing program crashes, but it uses
dynamic program instrumentation which significantly slows down
program execution, which is critical for fuzzing that executes pro-
grams numerously. Therefore, there is a pressing need to develop



Fuzz to the Future: Uncovering Occluded Future Vulnerabilities via Robust Fuzzing

a new approach that achieves fast, automatic binary patching in
robust fuzzing.

3 OVERVIEW

In this section, we provide an overview of the robust fuzzing tech-
nique. Figure 3 provides an overview of the overall system. The
system starts after a fuzzer (which we call base fuzzer in this pa-
per) discovers a crash. It analyzes the crash to determine the crash
type and location as well as extracts information about the program
state at the crash. Using this information, robust fuzzing generates a
patch that prevents the crash from occurring again and determines
an optimal location to insert this generated patch. It then switches
to apply patch mode, inserting the earlier generated patch at the
previously computed optimal location in the binary, preventing
the crash from occurring again. If the patch is inserted success-
fully, the crashing input is added to the fuzzer’s input queue and
the technique switches to fuzzing mode with the newly generated
patched binary as the target. If inserting the patch fails, it resumes
fuzzing the previously used binary until another crash is discovered.
This repeated Fuzz-Crash-Analyze-Patch approach enables robust
fuzzing to continuously identify and patch vulnerabilities in the
target binary, finding occluded future vulnerabilities.

Robust fuzzing is independent of which fuzzer or patching tool
is used: it can work with any off-the-shelf fuzzer and binary patch-
ing tool. It also does not require source code, as all analyses are
performed on the binary level.

3.1 Crash Verification and Triage

After the fuzzer has discovered a crash, the system verifies that
the crash can reliably be reproduced. If the crash was reproduced
successfully, it retrieves the memory mapping at the time of the
crash. This memory mapping helps to identify the exact image
where the crash occurs, which is required to identify the optimal
location and type of patch to insert to prevent future occurrences of
the crash. The memory mapping also helps identify static locations
in the memory mapping; this information is used by certain types of
patches inserted into the binary. The system also analyzes the crash
to determine if it is of a type whose patching is currently supported.
If either reproducing the crash fails, retrieving the memory mapping
fails, or if the crash is of a type that cannot be patched, the system
will not perform any further analysis and switch back to fuzzing
mode until the next crash is discovered.

3.2 Patch Generation

If all the above steps succeed, the system proceeds with patch
generation. Every patch generated by robust fuzzing has 3 key
components:

(1) Entry: This is the entry point of the patch. Its objective is to
analyze the current program state and determine if a crash is
about to occur. The entry component also saves any program
state that it overwrites for restoring later.

(2) Crash preventer: If the entry component determines that
a crash will occur, control transfers to the crash preventer
component. This component modifies the program state to
prevent the crash.
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(3) Exit: This is the final component of the patch that restores
any changes made to the program state using the data saved
by the entry component while preserving any changes made
by the crash preventer.

In the following section, we will describe the three components
of patches generated for all types of crashes currently supported
by robust fuzzing.

4 PATCH GENERATION FOR ROBUST
FUZZING

When designing the patching strategy, we considered two possible
approaches - using a single, generic patch that can handle multi-
ple crash types or a specific patch for each possible crash type. A
significant advantage of a generic patch is that it can be reused sev-
eral times without modification once designed. However, a generic
patch has multiple limitations. Firstly, designing a generic patch
that can handle multiple crash types can be particularly challeng-
ing given the diverse nature of possible crashes. Handling multiple
crash types also increases the size of the generic patch, which could
increase the difficulty of inserting the patch into a binary due to
space constraints and introduce significant execution overhead. Ad-
ditionally, adding support for a new crash type in the future could
require significant modifications to the patch. On the other hand,
specific patches can be tailor-made for particular crash types and
thus can be relatively small. Designing patches for specific crash
types simplifies adding support for more crash types in the future.
However, this ease and flexibility come at the cost of an increased
effort to design patches for every possible crash type.

In robust fuzzing, we adopted the latter approach of designing
specific patches for each crash type. One of the main objectives of
robust fuzzing is to help fuzzers discover valid occluded bugs that
lie beyond a crash. This objective requires that the patches activate
only when a crash is about to occur and perform the smallest
modification needed to prevent the crash while preserving the rest
of the program state. Using specific patches tremendously simplifies
achieving this objective and, thus, an acceptable one-time cost.

The current design of robust fuzzing supports the following
crashes: divide-by-zero, segmentation fault during memory access
in the program under test (both memory read and memory write),
segmentation fault at a function return, and crashes of two specific
types in library functions.

Any other types of crashes are ignored and treated as patching
failures. We restrict patching to only the target binary: no patches
are inserted into shared code, such as library functions. Localiz-
ing patches to the vicinity of the crash and tailoring them to the
specific crash enables us to precisely detect if a crash will occur
and minimize the modifications made to the program state. Table
1 lists the supported types of crashes, a summary of the patch for
each crash type, and the location where the patch is inserted. While
robust fuzzing does not support all crash types, the supported types
represent a large population of all crash types. Also, due to the
design of the patch template, the robust fuzzing system can be
easily extended for more crash types. In the rest of this section, we
describe the design of patches for each crash type supported by our
system.
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Table 1: List of supported crash types, summary of the patch for the crash and location of the patch

Signal Type Crash Type ‘ Patch Summary ‘ Patch Location(s)

SIGFPE Divide-by-zero in program Set divisor to non-zero value Before divide instruction
SIGSEGV Memory read in program Set address to a readable address Before memory read instruction
SIGSEGV Memory write in program Set address to a writeable address | Before memory write instruction
SIGSEGV Function return in program Save and restore return address | Before entry and exit from function
SIGSEGV Library function with 1 pointer argument | Set pointer to a readable address Before function call
SIGSEGV | Library function with 2 pointer arguments Skip function call Before function call

cmp r15b, 0 (2) Next, the entry component opens a file on disk in write-only

jne nopatch
mov r15b, 55
nopatch:

Listing 4: Example patch for divide-by-zero

4.1 Divide-by-Zero

The idea of patching divide-by-zero is relatively simple: if the value
of the divisor is 0, set the divisor to an arbitrary non-zero value.
Listing 4 shows an example patch generated for a division operation
performed with r15b register as divisor. The first two instructions
belong to the entry component: they check whether the divisor
r15bis 0. If yes, the crash preventer component sets r15b to a ran-
domly generated non-zero value and ensures that a divide-by-zero
does not occur. Since the check performed by the entry component
is straightforward, no program state cleanup is required, and thus,
the component is not present in this patch. The robust fuzzing
system supports patching divide-by-zero exceptions arising from
register and memory operand divisors.

4.2 Segmentation Fault at Memory Read

A segmentation fault occurs at a memory read because the ad-
dress being read from is invalid. Listing 5 shows the patch gener-
ated for a segmentation fault at the instruction movzx eax, word
[rax+rcx*2]. The patch performs the following operations:
(1) The entry component saves any registers that will be clob-
bered for use by the exit component (lines 1 to 6).

mode (lines 11 to 18), writes two bytes from the address in
question (line 8) to the open file (lines 22 to 25), and closes
the file.
Next, it checks if two bytes were successfully written to the
file (lines 33 to 34). If yes, the exit component is executed
since the memory read will not trigger a segmentation fault;
thus, no patching is required.
If the two bytes were not written successfully, patching is
required as a memory dereference will trigger a segmenta-
tion fault. The crash preventer sets the base register(here
rax) to a valid address, from where two bytes can be read,
and all other registers(here rcx), if any, to zero. This address
is randomly chosen from a static readable location in the
memory mapping extracted from the program at the time of
the crash and is guaranteed to be a valid address during any
point in the program execution.

(5) The exit component is executed (lines 38 to 44 or lines 47 to
52, depending on whether patching was required) to restore
any program state modified by the entry component. A key
thing to note in this example is that the rax register is re-
stored by the exit component only if the crash preventer did
not execute (line 38 vs line 47).

4.3

Unlike memory reads, a segmentation fault at memory write can oc-
cur for two reasons: the address being written to is either invalid or
not writeable. Thus, we cannot use the patch used for segmentation
faults at memory reads to handle segmentation faults at memory

Segmentation Fault at Memory Write
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; clobbered by syscall instruction
; clobbered by syscall instruction

push rcx
push ri11
push rdx
push rsi
push rdi
push rax
; save mem address value on stack
lea rsi, [rax + rcx * 2]
push rsi
; open("/tmp/fj", O_CREAT | O_WRONLY)
mov rsi, 0x6a662f706d742f
push rsi
xor edx, edx
mov esi, 65
mov rdi, rsp
mov eax, 2
add rsp, 8
syscall
pop rsi
push rax
; write(<fd>, <addr>, <size>)
mov rdx, 2
mov rdi, rax
mov eax, 1
syscall
; close(<fd>)
pop rdi
push rax
mov eax, 3
syscall
; if “size bytes written, do not patch
pop rax
cmp eax, 2
je nopatch
; patch component
mov rax, 0x3eca7b
mov rcx, 0
add rsp, 8
pop rdi
pop rsi
pop rdx
pop ri11
add rsp, 8
jmp done

nopatch:
pop rax
pop rdi
pop rsi
pop rdx
pop ri11
pop rcx

done:

Listing 5: Example patch for segmentation fault at memory
read in the program

write. We slightly modified the patch for a memory read to account
for both the possibilities for a memory write as explained below.
Listing 6 shows the patch generated for a segmentation fault at the
instruction mov dword [rdx+rcx*4],eax. The patch performs the
following operations:
(1) Similar to the memory read patch, the entry component
saves any registers clobbered for restoring later (lines 1 to
6).
(2) Next, /dev/random is opened in read-only mode (lines 11
to 20), 4 bytes are read from /dev/random into the memory
location with address rdx + rcx*4 and the file is closed.
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(3) If the four bytes were not read successfully, then the address
rdx + rcx * 4 is not writeable and patching is required.
The crash preventer sets the base register(here rdx) to a
valid writeable address, to which 4 bytes can be written, and
all other registers(here rcx), if any, to zero. Similar to the
patch for segmentation fault at a memory read, the address
is chosen randomly from a static writeable location in the
memory mapping extracted from the program at the time of
the crash and thus guaranteed to be a valid address at any
point in the program execution.

Finally, the exit component is executed (lines 40 to 46 or
48 to 53, depending on if patching was required) to restore
any program state. As in the previous example, rdx and rcx
are left unmodified if the crash preventer component was
executed.

—~
N
=

4.4 Segmentation Fault at Function Return

A segmentation fault occurs when returning from a function where
the saved return address was overwritten with an invalid address.
Unlike other cases, we use two patches to handle this crash (Listing 7
and 8). The first patch is inserted at the start of the function, which
saves the return address to a fixed location(here address 0x7000000).
The second patch is inserted just before the ret instruction, which
checks if the current return address matches the original return
address. If they do not match, the original return address is restored,
and execution resumes.

4.5 Segmentation Fault in Libraries

Segmentation faults in library functions are typically caused by
the arguments passed to them. The robust fuzzing system supports
patching crashes at two types of functions: those that take a single
argument of pointer type (e.g., strlen, strchr, etc) and those that
take two arguments of pointer type as arguments(e.g., memcpy,
memmove, memcmp, etc).

Consider the patch in Listing 9 for a crash in strlen.

(1) Similar to in the memory read patch, the entry component
saves any registers clobbered for restoring later (lines 1 to
6).

(2) Next, the component uses the Linux madvise system call to
determine if the memory page to which the pointer belongs
is a valid, mapped memory page (lines 8 to 16). If the page is
not mapped, then patching is required.

(3) The crash preventer modifies rdi (which contains the first
argument to the function as per the calling convention) to
point to a valid mapped page.

(4) Finally, the exit component performs the necessary cleanup
(lines 22 to 28 or 23 to 28, depending on whether the crash
preventer was executed).

While, in theory, the sole pointer argument could span more than
one page, from our experiments, we found that checking for a single
page was sufficient.

Listing 10 shows a patch for a crash in memcpy invoked at address

0x258f39.
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rex
ril
rdx
rsi

; clobbered by syscall instruction
; clobbered by syscall instruction

push
push
push
push
push rdi
push rax
; save mem address value on stack
lea rsi, [rdx + rcx * 4]
push rsi
; open("/dev/random", O_RDONLY)
mov esi, 0x6d6f64
push rsi
mov rsi, 0x6e61722f7665642f
push rsi
xor edx, edx
mov esi, @
mov rdi, rsp
mov eax, 2
add rsp, 16
syscall
pop rsi
push rax
; read(<fd>, <addr>, <size>)
mov rdx, 4
mov rdi, rax
mov eax, 0
syscall
; close(<fd>)
pop rdi
push rax
mov eax, 3
syscall
; if “size ™ bytes read, do not patch
pop rax
cmp eax, 4
je nopatch
; patch component
mov rdx, 0x42d191
mov rcx, 0
pop rax
pop rdi
pop rsi
add rsp, 8
pop ri1l
add rsp, 8
jmp done
nopatch:
pop rax
pop rdi
pop rsi
pop rdx
pop ri11
pop rcx
done:

Listing 6: Example patch for segmentation fault at memory
write in the program

push rdi

mov rdi, [rsp + 8]
mov [0x7000000], rdi
pop rdi

Listing 7: Example patch for segmentation fault at ret in-
struction in the target binary (function entry)

(1) After saving any clobbered registers (lines 1 to 9), the entry
component checks if all bytes of the source and the destina-
tion belong to a mapped page in memory using the madvise
syscall (lines 16 to 27 and 31 to 43).
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push rsi
push rdi
mov rdi, [rsp + 16]
mov rsi, [0x7000000]
cmp rdi, rsi
je nopatch
mov [rsp + 16], rsi
nopatch:

pop rdi

pop rsi

Listing 8: Example patch for segmentation fault at ret in-
struction in the target binary (function exit)

; clobbered by syscall instruction
; clobbered by syscall instruction

push
push
push
push
push rax
push rdi
; madvise(<address of page with string>, <page_size>, MADV_NORMAL)
mov rdx, 4095
not rdx
and rdi, rdx
mov rsi, 4096
mov rdx, 0
mov rax, 28
syscall
cmp eax, 0
jge nopatch
; patch component
mov rdi, 2379059
add rsp, 8
jmp done
nopatch:
pop rdi
done:
pop
pop
pop
pop
pop

rex
ril
rdx
rsi

rax
rsi
rdx
ril
rex

Listing 9: Example patch for segmentation fault at strlen

(2) If the source or the destination have any bytes that do not be-
long to a mapped page, the crash preventer skips the memcpy
call and continues from the next instruction after the call (at
address 0x258f3e).

(3) It should be noted that the crash preventer component ex-
ecutes after the exit component performs its cleanup since
the fix by the crash executor to prevent the crash is to skip
invoking memcpy altogether.

5 IMPLEMENTATION

We implemented the robust fuzzing system and developed FlakJack,
a fuzzing add-on designed to discover occluded future vulnerabili-
ties. We utilized AFL++ v4.09¢ [18] as the foundational fuzzer and
Patcherex [5] for binary rewriting. Additionally, we employed GDB
interfaces to gather crash information, which aids in triage and gen-
erates crash type-specific patches. Flak]Jack generates binary-only
patches, supports binary-only targets, and is compiler-agnostic.
The current implementation focuses on x86_64 binary programs.
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; clobbered by syscall instruction
; clobbered by syscall instruction

push rcx
push ri11
push rdx
push rsi
push rax
push rdi
push rbx
push ri12
push ri3
; save arguments for use later

mov rbx, rdi

mov r12, rsi

mov r13, rdx

; check if all destination bytes are valid using madvise

; compute start address of page with first byte of destination pointer
mov rdx, 4095

not rdx

and rdi, rdx

; compute end address of page with last byte of destination pointer

; and thus, number of bytes to check

lea rsi, [rbx + r13 + 4096]

and rsi, rdx

sub rsi, rdi

mov rdx, @

mov rax, 28

syscall

cmp eax, 0

jl skip_memcpy

; check if all source bytes are valid using madvise

; compute start address of page with first byte of source pointer

mov rdi, ri12

mov rdx, 4095

not rdx

and rdi, rdx

; compute end address of page with last byte of source pointer and thus,

; number of bytes to check
lea rsi, [r12 + r13 + 4096]
and rsi, rdx
sub rsi, rdi
mov rdx, 0
mov rax, 28
syscall
cmp eax, 0
jge done
skip_memcpy:

pop ri13

pop ri2

pop rbx

pop rdi

pop rax

pop rsi

pop rdx

pop ri11

pop rcx

jmp 0x258f3e
done:

pop ri13

pop ri12

pop rbx

pop rdi

pop rax

pop rsi

pop rdx

pop riil

pop rcx

Listing 10: Example patch for segmentation fault at memcpy

FlakJack is an extremely lightweight tool, comprising approxi-
mately 1200 lines of Python code. It interfaces with AFL++ through
the Phuzzer library [4] and GDB via the GDB Python API provided
by pwntools [21].
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6 EVALUATION

To evaluate the effectiveness of robust fuzzing in uncovering oc-
cluded future vulnerabilities, we designed two experiments for
FlakJack to address the following research questions:

(1) How effective is robust fuzzing at accelerating the discovery
of occluded future vulnerabilities when integrated with an
existing fuzzing engine (Section 6.1)?

(2) Is robust fuzzing capable of detecting future bugs in current
real-world projects (Section 6.2)?

Both experiments adhere to established fuzzing norms. Specifi-
cally, we conducted all experiments on Ubuntu 22.04 LTS with a
memory cap of 8GB. In line with recommendations from the fuzzing
evaluation research by Klees et al. [29], each experiment was run
for 24 hours and repeated ten times.

All target programs were compiled with static linkage for all
project code and dynamic linkage for all external libraries (e.g.,
libc), following the guidelines suggested by the developers of
AFL++ for fuzzing applications using AFL++ [12].

6.1 FlakJack’s Acceleration in Occluded Future
Vulnerability Discovery

We conducted an experiment to assess the effectiveness of robust
fuzzing in accelerating the discovery of occluded future vulnerabili-
ties when integrated with an existing fuzzing engine. At a high level,
this experiment involved running FlakJack, the implementation of
robust fuzzing, alongside its base fuzzer, AFL++ [18], on a set of
target programs from real-world projects. We followed the fuzzing
process mentioned above, counted the number of occluded future
vulnerabilities identified by FlakJack and by AFL++, and compared
the results generated by the two tools.

Dataset. As our paper pioneers the investigation of occluded fu-
ture vulnerabilities, there is no established dataset for occluded
future vulnerabilities currently. Therefore, we need to construct a
comprehensive dataset to effectively evaluate robust fuzzing and
potentially future techniques.

One possible approach would be to collect a random corpus
of current projects. However, this method may not be suitable
because current fuzzing techniques are not effective enough for all
programs. For instance, programs that extensively use encryption
or those for which crafting high-quality harnesses is challenging
may not yield a sufficient number of occluded future vulnerabilities
for meaningful statistical comparison when tested with the base
fuzzer and FlakJack. Therefore, we need to select projects known to
have vulnerabilities previously identified by our comparison base
fuzzer, AFL++.

Additionally, if a project has undergone intensive fuzzing, choos-
ing its most recent version might introduce bias since vulnerabilities
detectable by the base fuzzer may have already been patched, mak-
ing it difficult to find further vulnerabilities. To avoid bias from
projects that have been extensively fuzzed, we need to find pro-
grams that are known to be amenable to fuzzing but have not been
heavily subjected to it by the base fuzzer or similar tools.

Considering these factors, we decided to utilize a set of earlier
versions of fuzzing targets known to contain a significant number
of vulnerabilities. In this way, we will obtain historical fuzzer-found
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vulnerabilities, and treat as future vulnerabilities the later vulner-
abilities that have been found in the version that patches those
earlier vulnerabilities. Specifically, we built the dataset through the
following steps:

(1) We surveyed fuzzing papers published in the top four secu-
rity conferences since 2020 to identify the programs used in
their evaluation.

(2) From this list, we chose programs that have at least 100 CVEs
reported from 2012 as per the National Vulnerability Data-
base [36] and built the oldest successfully buildable version
of each project using AFL++ in LTO mode [26], which is
the recommended source instrumentation mode by AFL++
developers.

(3) For projects successfully built in the previous step, we chose
the most commonly used programs from these projects in
previous papers where AFL++ can find at least one bug of a
type that is patchable by FlakJack.

(4) For each program, we selected the command line arguments
and seeds from the Unifuzz dataset [30]. For programs not
present in the Unifuzz dataset, we pick valid seeds from the
dataset and the most commonly used command line argu-
ments from previous security bugs reported to the project.

This process ensures that we have the projects widely tested by
fuzzers, with several security-critical bugs reported in the past
and a sufficiently long development history that enables reliably
measuring FlakJack’s performance of finding occluded future vul-
nerabilities over years and versions. In this way, this experiment
essentially investigates that, if FlakJack were added to a base fuzzer
when fuzzing a program at version X, can it identify occluded future
vulnerabilities more effectively than the base fuzzer. We list the
projects and specific programs chosen using the above method in
Table 2.

Table 2: The testing projects and their version selected
throughout the process.

Binary Tested ‘ Project ‘ Version ‘ Release Year

nm
objdump binutils 221 2009
readelf
ffmpeg ffmpeg 0.10.1 2012
MP4Box gpac 0.7.0 2017
tiffep libtiff 4.0.1 2012

Occluded Future Vulnerability Identification. Recall that an
occluded future vulnerability is a vulnerability that is occluded (fully
or partially) by another vulnerability. Following the definition, for
each crash discovered by FlakJack in each binary, we determine if
the crash is associated with a true occluded future vulnerability as
follows:

(1) False positive crash checking. We automatically verify if the
crashing input causes the original binary to crash. If not, we
deem the crash as a false positive (§ 6.1) (which is caused by
the design of approximate patching).
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(2) Occluded future vulnerability checking. We automatically ver-
ify if the crashing input causes the original binary to stop at
an earlier crashing point.

False positive occluded future vulnerability checking. We ver-
ify if the identified occluded future vulnerability exists in
the original binary. We employ a hybrid approach for the
verification, where we first find the fixing commit for the
crash in the original version and check if the crashing in-
put triggers a crash in the fixed binary. If this fixed binary
crashes and the crash is identical to the crash in the FlakJack
generated patched binary, then crash triggered by FlakJack
is an occluded bug. Otherwise, we manually check if the
identified occluded future vulnerability exists if the original
binary is fixed for the occluding crash. If not present, we will
label the crash as a false positive.

Discovered Occluded Future Vulnerability Statistics. Table 3
displays the number of occluded future vulnerabilities identified
by FlakJack and its base fuzzer, AFL++. Note that AFL++ still de-
tected some occluded future vulnerabilities because these were not
fully occluded. In total, among all 92 occluded future vulnerabilities
identified by FlakJack, AFL++ only discovered 24 vulnerabilities,
which is 26% the number discovered by FlakJack. These results
clearly demonstrate that FlakJack significantly complements its
base fuzzer in detecting more occluded future vulnerabilities. With
the implementation of robust fuzzing, the effectiveness of discover-
ing occluded future vulnerabilities has been markedly enhanced.
We further analysed all occluded bug to determine the occlusion
depth i.e. how many occluding crashes need to be overcome before
the occluded bug is reached. We found that on average, at least 2
unique crashes need to be bypassed in order to reach an occluded
bug with a maximum of 20 crashes in some cases. Table 3 also lists
the average, median and maximum number of occluding crashes to
be bypassed before occluded bugs are triggered for each target.

Table 3: Number of occluded future vulnerabilities discovered
by FlakJack and AFL++.

Target ‘ FlakJack ‘ AFL++ ‘

Occlusion depth

‘ Mean ‘ Median | Max

nm 7 5 1 1 2
objdump 25 1 2.25 2 20
readelf 31 12 2 2 17
fimpeg 15 2 4.2 4 8
MP4Box 12 2.2 1 4
tiffcp 2 1.75 2 3
Total | 92 | 24 | 18 | 1 | 20

Flak]Jack identified both new vulnerabilities and new variants of
known ones. For example, the motivating example we introduced in
Section 2 was exclusively found by FlakJack. Besides that, FlakJack
also identified polymorphic vulnerabilities, such as the divide-by-
zero vulnerability in function display_debug_lines_raw, Vulner-
ability ID 17531 [2] (Listing 1). In the meantime, there is an identi-
cal vulnerability in function display_debug_lines_decoded, as
shown in Listing 11 at Line 8.
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1 /* This loop iterates through the Dwarf Line Number Program. #*/
2 while (data < end_of_sequence)

if (op_code >= linfo.li_opcode_base)

{

adv = (op_code % linfo.li_line_range) + linfo.li_line_base;
state_machine_regs.line += adv;
10 is_special_opcode = 1;

11 }

Listing 11: Function display_debug_lines_decoded in binu-
tils. A SIGFPE occurs at line 8 due to a divide-by-zero vulner-
ability

1 lea rdx, [rdi+rcx*4]

2 mov QWORD PTR [rsp-0x301],rdx
3 ...

4 mov rdi,QWORD PTR [rsp-0x30]
5 movzx eax,BYTE PTR [rdi+rbxx*1]

Listing 12: Assembly code for cavs_idct8_add_c in ffmpeg

We observed that AFL++ failed to trigger the crash in function
display_debug_lines_decoded because this function is occluded
by display_debug_lines_raw in nearly all potential executions,
as illustrated in Listing 3. In contrast, FlakJack successfully identi-
fied both crash variants. After encountering the first variant, Flak-
Jack applied a patch and continued operation, executing an addi-
tional 17,744 basic blocks before encountering the second crash.
These executions spanned across 44 unique basic blocks, demon-
strating that FlakJack is capable of identifying vulnerabilities or
their variants that are significantly distant from each other in the
code.

False Positives. Unlike traditional fuzzing, robust fuzzing can lead
to false positives — instances where inputs cause the patched binary
to crash but not the original binary — due to approximations in
the patching process. We quantified the number of false positives
produced by FlakJack, and we found that FlakJack generated three
false positives from fimpeg and none from the other five programs.

We further investigated the three false positives and discovered
that they were all related to a single issue which arises when a
patch is inserted into function cavs_idct8_add_c. A snippet of
the assembly code from the function cavs_idct8_add_c is shown
in Listing 12. In this snippet, some pointers are stored at addresses
that are at a negative offset to the stack pointer. Later on in this
function, these pointers are retrieved by using the same negative
offset and are dereferenced.

When FlakJack inserts a patch into a function, it assumes that
all local variables and pointers used by the function are located at
non-negative offsets from the stack pointer. In this highly unusual
scenario, however, this assumption is incorrect and the patch ends
up overwriting the pointers below the bottom of the stack. When
these pointers are eventually dereferenced, it leads to a segmenta-
tion fault due to the overwritten value, as shown Figure 4.
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STACK_TOP STACK_TOP
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char *ptr3 — FJ_CONST
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STACK_BOTTOM STACK_BOTTOM

Figure 4: The false positive crash in ffmpeg that arises due to
pointers being stored outside of the function’s stack frame.

Patching Performance and Representativeness. Recall that a
primary objective of FlakJack is to facilitate rapid patching. To as-
sess the patching performance, we measured the average patching
speed of FlakJack across each fuzzing process, and we compute
the average and standard deviation for the average patching speed.
Our results indicate that FlakJack consistently patched any target
program within 100 seconds. Additionally, the variability in patch-
ing time across all fuzzing targets was marginal, with the standard
deviations ranging from 0.00014 to 0.001. These findings suggest
that FlakJack reliably achieves rapid patching across a variety of
programs.

Furthemore, we assessed the patching sucess rate over all target
programs. In this experiment, FlakJack generated patches for 7582
out of 8093 patching tasks, with a success rate over 93% . This
number indicates that the patches that we design for robust fuzzing
are representative for real-world targets.

Case Study: Occluded Future Vulnerability Discovery Accel-
eration from Historical Binutils Project.

We further explored the occluded future vulnerabilities exclu-
sively identified by FlakJack and assessed the potential time savings
in detecting these vulnerabilities compared to their historical discov-
ery timeline. Specifically, we analyzed the lifetime of six occluded
future vulnerabilities in the project binutils, exclusively identi-
fied by FlakJack. We sourced the report and corresponding fixes for
these vulnerabilities from public records. The timeline was calcu-
lated from the release date of our target program — when FlakJack
first identified the vulnerability — to the official report date.

Table 5 presents the details of the investigated vulnerabilities
for binutils version 2.21, including the commit of the report, the
reporting date, the earliest release of binutils incorporating the
fix, and the duration from the release date of the binutils version
analyzed by FlakJack to the actual report date of the vulnerabil-
ity. According to the table, the occluded future vulnerabilities in
binutils 2.21 identified by FlakJack were not recognized until the
release of binutils 2.26 or later. These vulnerabilities, discovered
between 2014 and 2016, could have been identified as early as 2009
had FlakJack been deployed, as illustrated in Figure 5. Overall, Flak-
Jack has the potential to save approximately 35+ engineering years
for merely these six vulnerabilities.
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Case study: Analyzing exploitability of occluded bugs

To further understand the benefit of FlakJack in fuzzing, we
analyze the FlakJack discovered occluded bugs to understand their
exploitability. Specifically, we analyze the control flow graph (CFG)
recovered from the compiled programs to determine if the occluded
bugs are occluded along all possible valid execution paths within the
program or if they can be triggered through an alternate execution
path. Table 4 lists the count of partially and fully occluded bugs
discovered by FlakJack.

Table 4: Statistics of partially and fully occluded vulnerabili-
ties exclusively discovered by FlakJack.

Target ‘ Fully occluded ‘ Partially occluded

ffmpeg 12 3
mp4box 5 7
nm 2 5
objdump 23 2
readelf 19 12
tiffcp 1 1

From table 4, we see that most of the bugs are fully occluded i.e.
there exist no valid execution paths through the program which
can trigger the occluded bug. Thus, these bugs are currently not
exploitable since they cannot be triggered but future changes to
the program could fix the occluding bug, making the occluded
bug triggerable and potentially exploitable. However, some of the
undiscovered bugs are partially occluded i.e. they can be triggered
via at least one execution path along which no vulnerabilities exist.
Thus, the partially occluded bugs can likely be triggered in the
unmodified binary and possibly exploitable. By fixing the occluding
vulnerability, FlakJack enabled the fuzzer discover such partially
occluded bug, which was otherwise undiscovered. Thus, FlakJack
not only enables discovering fully occluded vulnerabilities that
may be exploitable in future but also enables discovering currently
exploitable vulnerabilities that are difficult for a fuzzer to trigger.

6.2 Finding Occluded Future Vulnerabilities
from Current Real-world Projects

In this experiment, we operated FlakJack on real-world programs
with the objective of uncovering occluded future vulnerabilities in
the present. Unlike the projects selected in the previous experiment,
here we chose projects from OSS-Fuzz due to the availability and
accessibility of unfixed crashes. The OSS-Fuzz issue tracker features
several unresolved issues labeled as “Fuzz-blocker;,” i.e., crashes that
occur frequently during fuzzing and thus blocking the fuzzing
process.

We analyzed all reproducible, fuzz-blocking crashes and selected
those that could be patched by FlakJack. Considering that OSS-
Fuzz harnesses utilize sanitizers (which influence crash triaging
in FlakJack) and can be built for different fuzzers, we specifically
filtered these crashes to include only those fuzz harnesses that could
be built for AFL++ without sanitizers, resulting in 17 bugs across
15 projects.

For each fuzzer harness, we executed FlakJack using the same
seeds and configuration as employed by OSS-Fuzz. Differently from
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Page *Catalog::getPage(int i) {
Page *page;
if (!pages[i-1]) {
loadPage(i);
3
page = pages[i-1];
return page;

Listing 13: Function getPage in xpdf OSS-Fuzz harness. An
invalid page can be accessed if i is 0

the previous experiment, we initiated the process with the Fuzz-
blocker crash from OSS-Fuzz as the first crashing input, patched this
crash, and then continued the operation as planned. We employed
the same methodology to identify occluded future vulnerabilities
as detailed in the previous experiment, where we repeated the
fuzzing process for 10 times, collected all the identified crashes,
and screened them by the rules in order to obtain occluded future
vulnerabilities.

Table 6 provides the details of the discovery, including the name
of the target project, the OSS-Fuzz issue ID of the crash input for
FlakJack to start, and the number of occluded future vulnerabilities
FlakJack identified from the target project and the Fuzz-blocker
crash. FlakJack successfully identified 28 occluded future vulnerabil-
ities from 9 current projects in total. Notably, FlakJack discovered 14
and 7 occluded future vulnerabilities in inchi and libavc, respec-
tively. These results affirm that FlakJack is capable of identifying
occluded future vulnerabilities in current real-world programs.

Furthermore, the results underscore the critical importance of
addressing Fuzz-blocker crashes in practice. The rich number of
identified occluded future vulnerabilities illustrate the potential
impact caused by fuzzing-blockers: a significant number of vul-
nerabilities can be uncovered if these blocks are resolved. Thus,
Fuzz-blocker crashes do more than merely slow down or impede the
fuzzing process — more importantly, they prevent the exploration of
certain program areas, thereby degrading the overall effectiveness
of vulnerability discovery.

False Positives. In this experiment, FlakJack generated 39 false
positive bugs. While most of the bugs are caused by FlakJack’s
approximation on patches, we also identified an interesting case
from project xpdf, as shown in Listing 13 and in project haproxy.
In this case, variable i can be set to 0, and thus a crash happens
because of invalid access pages[-1]. As we looked into this issue,
we realized that the buggy program comes from the fuzzing harness
fuzz_pdfload.cc instead of xpdf’s executable program, which
was just reported one month ago [11]. Although the identified
crash is a false positive, FlakJack still helped identify a valid issue
related to the project. In case of haproxy, we discovered that all
29 bugs discovered in haproxy are not valid bugs because several
initial checks have been skipped in the fuzz harness. We also found
that this issue in fuzzing harness was previously discovered by
developers when analyzing a different bug also reported using the
OSS-Fuzz fuzzing harness [24].
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Figure 5: Occluded Future Vulnerability Discovery Timeline: The world with FlakJack and without (Reality). All the 6 different
vulnerabilities discovered since year 2014 could have been discovered in 2009 by FlakJack.

Table 5: Details of occluded future vulnerabilities discovery by FlakJack and the reality.

ID _ FlakJack . . Reallty. Time Saved by FlakJack
Target Version | Target Release Date | Target Version | Fix Commit | Bug Report Date

5375 binutils-2.28 db9537d2b73 2016-08-05 6 years 9 months 20 days
30085 binutils-2.28 db9537d2b73 2016-08-05 6 years 9 months 20 days
66725 N binutils-2.28 db9537d2b73 2016-08-05 6 years 9 months 20 days

— 1s-2.21 2009-10-1

179 | Dhoutils 009-10-16 binutils-2.28 | db9537d2b73 2016-08-05 6 years 9 months 20 days
77529 binutils-2.26 6937bb54a9¢c 2014-11-16 5 years 1 months 0 days
48071 binutils-2.26 0a9d414aall 2014-11-21 5 years 1 months 5 days

Table 6: Discovered Occluded Future Vulnerabilities from
Current Projects

Project 0SS-Fuzz Issue ID #Occluded l?lfture
Vulnerability
assimp 58667 0
cairo 54783 0
haproxy 36266 0
inchi 37224 14
libave 55608 7
libbpf 62476 0
libsass 31594 0
libsass 47248 2
netcdf 38537 2
sleuthkit 50396 0
tidy-html5 36781 0
tremor 19619 0
tremor 19860 0
tremor 19872 0
unit 52469 1
wasm3 40923 2
xpdf 44461 0
Total ‘ 28

7 DISCUSSION AND FUTURE WORK

Building an Occluded Future Vulnerability Benchmark. In
our current evaluation, we have not measured the false negatives,
i.e., the number of occluded future vulnerabilities that FlakJack and
its base fuzzer missed in target programs. This omission stems from
the challenge of obtaining the ground truth about occluded future
vulnerabilities in real-world projects, which is hindered by a lack
of publicly available information, such as vulnerability-triggering
inputs and fixing commit logs. Moreover, completely identifying
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all occluded future vulnerabilities is currently impossible, as no
technique yet exists that can identify all execution paths that trigger
a vulnerability.

Furthermore, constructing such a benchmark is challenging. A
potential solution could involve building a dataset based on real-
world programs. However, few real-world projects meet all neces-
sary criteria, including 1) sufficient age to include a comprehensive
set of occluded future vulnerabilities, 2) compatibility with environ-
ments that support modern fuzzers, and 3) presence of surface-level
crashes that can be readily discovered by fuzzers. Thus, we propose
the development of an occluded future vulnerability benchmark as
a separate research project, akin to projects such as LAVA [13] and
MAGMA [25].

Support for More Crash Types and Architectures. The cur-
rent robust fuzzing system can be extended to support additional
types of crashes. For instance, in our analysis of crashes in tiffcp,
ffmpeg, and MP4Box, we identified several crashes related to float-
ing point operations (e.g., XMM and AVX instructions), dynamic
memory allocation functions (e.g., malloc, free, new), and indirect
control transfer instructions (e.g., indirect calls and jumps). Un-
fortunately, the system does not currently support patching these
types of crashes. Additionally, FlakJack only supports x64 and ELF
executables. However, the core concept is adaptable to any platform
or architecture, and we plan to explore these extensions in future
work.

Issues Caused by Dependent Tools. In our implementation, Flak-
Jack uses GDB to triage crashes and extract necessary information
for generating patches. However, some crashes are not reproducible
with GDB; we attribute this to limitations in reproducing the crash
in GDB or to the remote procedure-call-based interface of pwntools’
Python API to GDB. This issue might be mitigated by methods such
as deterministic execution replaying or time-travel debugging (e.g.,
rr [39]).


https://sourceware.org/git/gitweb.cgi?p=binutils-gdb.git;h=db9537d2b73
https://sourceware.org/git/gitweb.cgi?p=binutils-gdb.git;h=db9537d2b73
https://sourceware.org/git/gitweb.cgi?p=binutils-gdb.git;h=db9537d2b73
https://sourceware.org/git/gitweb.cgi?p=binutils-gdb.git;h=db9537d2b73
https://sourceware.org/git/gitweb.cgi?p=binutils-gdb.git;h=6937bb54a9c
https://sourceware.org/git/gitweb.cgi?p=binutils-gdb.git;h=0a9d414aa11
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FlakJack relies on a specific technique in Patcherex to apply gen-
erated patches to the binary. However, this technique occasionally
fails to insert patches and also relocates some valid code around the
crash site to a different section, affecting crash triaging. We believe
that these limitations can be addressed by modifying the current
technique to handle these problem cases, a task orthogonal to the
core functionality of FlakJack. Alternatively, approaches such as
Ramblr [44] could help to overcome these limitations.

Currently, FlakJack does not work well with sanitizers because
their instrumentation impacts the required triaging. However, san-
itizers are extensively used alongside fuzzers today and provide
additional information about crashes. We believe that modifying
FlakJack to work with sanitizers is an interesting idea that could
improve the quality of patches generated.

8 CONCLUSION

In this paper, we introduce the concept of occluded future vul-
nerabilities, a class of vulnerabilities whose execution paths are
either completely or partially occluded by other vulnerabilities. We
highlight the significance of identifying such vulnerabilities and
propose a method for their detection. Building on this method, we
created robust fuzzing and developed FlakJack, which enhances the
capability of its base fuzzer to accelerate the discovery of occluded
future vulnerabilities. Using FlakJack, we successfully identified 28
new vulnerabilities in projects that are actively tested in real-world
scenarios. The development of FlakJack represents a significant
breakthrough in software security, offering more efficient and ef-
fective management of vulnerabilities.
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